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Abstract

We introduce the concept of non-cooperative computation (NCC), which
is the joint computation of a function by self-motivated agents, where
each of the agents possesses one of the inputs to the function. In NCC
the agents communicate their input (truthfully or not) to a trusted cen-
ter, which performs a commonly-known computation and distributes the
results to the agents. The question is whether the agents can be in-
cented to communicate their true input to the center, allowing all agents
to compute the function correctly. NCC is a game theoretic concept,
and specifically is couched in terms of mechanism design. NCC is a very
broad framework, and is specialized by imposing specific structure on the
agents’ utility functions. The technical results we present are specific to
the setting in which each agent has a primary interest in computing the
function, and a secondary interest in preventing the others from comput-
ing it (properties called correctness and exclusivity). For this setting we
provide a complete characterization of the Boolean functions that are non-
cooperatively computable. We do this for three versions of NCC: a basic
deterministic version, a probabilistic version, and a version in which the
computation can be subsidized by the center. The analysis turns out to
depend on whether the inputs of the agents are probabilistically correlated
or not, and we analyze both cases.1

1This work was supported by NSF grant IIS-0205633.
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1 Introduction

In this paper we introduce the framework of non-cooperative computation (NCC).
In the NCC model, n agents each wish to compute an n-ary function w (we as-
sume it is the same function for all agents, although that can be generalized),
with each of the agents holding one of the inputs to w. For example, they may
each hold a number, and wish to compute the average. Or, to draw from the
Boolean domain from which most of our technical results are drawn, they may
each hold a bit (0 or 1), and wish to compute the majority function (which is 1
iff a majority of the input bits are). The process of computation is mediated by
a center as follows: Each agent declares his input (truthfully or not) to the cen-
ter, the center performs computation based on those inputs, and reports back
to the agents an output. In the basic setting we will define, the center simply
applies w to the declared inputs and announces the value to all the agents. In
two extensions of the basic setting we will consider the center is given greater
flexibility, but in all cases the center’s protocol is common knowledge among
the agents.

The only thing standing between the agents and successful computation are
their conflicting self interests. The incentives of the agents in NCC are multi-
faceted, but are always defined in terms of the information available to the
various agents. In this paper we will concentrate on agents whose utility function
has two components. The first, called correctness, is the wish to compute the
function correctly. The second, called exclusivity, is the wish that other agents
do not compute the function correctly. We assume a lexicographic ordering
between these two, with correctness preceding exclusivity.

As an example of this two-tiered preference ordering, imagine several biol-
ogists wishing to sequence a genome of an organism, each having deciphered
a different part of the genome. Each of them would like to know the entire
sequence so that s/he can publish a paper with the correct genetic code, but,
given that, s/he would just as soon be a sole author. Assuming the scientists
communicate via a center as described, the question is whether the scientists
can be incented to reveal the correct code segments, and thus all scientists will
know the entire genetic code at the end. If the answer is yes, we will say that the
function which assembles the entire genetic code from the individual segments
is non-cooperatively computable, or NCC.2

To get a more technical intuition for this problem, let us consider again the
Boolean domain. Specifically, consider agents 1, . . . , n trying to compute some
Boolean function w(x1, . . . , xn) where xi is Boolean and known only by agent
i. For example, consider the parity function (whose value is 1 iff the number
of 1’s in the input is even). Intuitively speaking, the parity function is not
NCC; assuming all agents other than i disclose their true values, agent i has the

2By slight linguistic abuse, we use the abbreviation NCC as both a noun and an adjective.
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incentive to lie; it will then reverse the result of the computation and obtain
the correct value of w, whereas the others will end up with the wrong answer.
In contrast, consider the majority function. Again, intuitively speaking, this
function is non-cooperatively computable; if an agent attempts to deceive the
others he will not in general be able to reconstruct the correct value himself.

These simple examples make it clear that the NCC framework is inherently
game theoretic. Essential to the above arguments is the notion of equilibrium;
we ask what an agent’s best action is, given that the others adopt the equilibrium
strategy (in this case, telling the truth). Indeed, NCC falls squarely in the area of
mechanism design (or implementation theory) [5]. A branch of game theory that
has attracted some attention in computer science recently, mechanism design
is concerned with crafting protocols for self-interested agents that cause these
agents behave in a certain desired way. What makes NCC unique from the
standpoint of mechanism design is that the objective of the mechanism designer
(the ‘implemented function’, to use the game theoretic jargon), as well as the
utility functions of the individual agents, are defined entirely in terms of the
information available to the different agents.3

It is instructive to contrast the NCC setting with the setting traditionally
studied in cryptography, in particular the work on secure multi-party protocols
(see [2] for a relatively recent overview, and [4] for a discussion and overview of
such protocols in a game-theoretic context). As in NCC, here too the goal is to
compute a function jointly by a set of agents, each of whom holds part of the
input. Furthermore, these agents are self-interested and even adversarial. The
similarities end there, however. In the MPP literature there is an assumption
that some of the agents (the ‘good’ agents) follow the prescribed protocol, and
the rest (the ‘bad’ agents) deviate from it. There are two models of deviation
(the ‘curious’ and the ‘malicious’), but the details don’t concern us here. The key
is that, with these assumptions, the traditional cryptographic setting involves no
equilibrium analysis, and indeed no explicit representation of the agents’ utility
functions; the latter are left implicit. It is an interesting exercise to attempt a
game theoretic model of cryptographic protocols, as was done for the case of

3NCC is in fact a specialization of the more general category which we call informational
mechanism design, or IMD. Recall that in general, any mechanism-design problem takes as
input a social-choice function, and the individual preferences of the players. IMD specializes
MD by insisting that both the social-choice function and the individual preferences are purely
informational; that is, they are defined in terms of which agent knows what information. NCC
further specializes IMD by having a particular social-choice function; in NCC the desired
outcome is that all agents know the value of the function w. That still leaves a key degree
of freedom, namely the preferences of the players. In this paper, when we speak of NCC
we implicitly assume the two-tiered lexicographic preference mentioned. But the concept of
NCC is broader. For example, in follow-up work [6], the setting is augmented to capture
other potential interests of agents: An agent may prefer that others not know its own input
(so-called privacy), and an agent may prefer to know the inputs of other agents (so-called
voyeurism). However, the basic properties of NCC are revealed already in the case considered
here.
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byzantine agreement [7]; such analysis exposes the non-comparable concerns of
cryptography and game theory. In the discussion section at the end we comment
on potential connections between NCC and the notion of variable influence,
which is related to cryptography, but otherwise discussion of cryptography is
beyond the scope of this article.

In order to state our specific results we must make several distinctions. The
first distinction, familiar from the auction theory literature as well as from
several computer science contexts, has to the do with the information structure
of the agents: Are their private inputs (signals, in the game-theory parlance)
independent or correlated? The second distinction, very familiar in computer
science, is between deterministic computation and probabilistic computation.
The third important distinction, which is novel in computer science but standard
in game theory, is whether the system supports the transfer of money, and if
so whether the mechanism is required to be budget balanced. (In plain terms,
the question is whether the center can influence the behavior of the agents
by injecting a subsidy into the system.) These last two restrictions give rise
to three variants of NCC called, respectively, D-NCC (deterministic NCC), P-
NCC (probabilistic NCC, in which the center given freedom to randomize its
computation), and S-NCC (subsidized NCC). In the next section we provide
the formal model of these, and in the subsequent section we prove the following
results:

1. In the independent values setting:

(a) A Boolean function is D-NCC iff it is not dominated and not re-
versible.

(b) A Boolean function is P-NCC iff it is D-NCC.
(c) A Boolean function is S-NCC iff it is not reversible.

2. In the correlated values setting:

(a) A Boolean function is D-NCC iff it is not dominated and not re-
versible.

(b) A Boolean function is P-NCC iff it is not dominated.
(c) Every Boolean function is S-NCC.

In addition, in the discussion section we go beyond Boolean functions and briefly
discuss the non-cooperative computation of k-order statistics.

2 Definitions

In this section we formally define the notion of NCC in the two-tiered prefer-
ence setting. We first define the basic, deterministic case, and then we define
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extensions of it.

2.1 Deterministic NCC (D-NCC)

Given a set of agents N = {1, 2, . . . , n}, and a special agent termed ‘the center’,
we assume that there exists a private secure communication line between every
agent i ∈ N and the center. The type vi of agent i is selected from some domain
Bi. Although our definitions can be generalized to apply more broadly, our
technical results primarily address the Boolean case, in which Bi = B = {0, 1};
from here on we will assume this restriction.

The vector of agent types v = (v1, . . . , vn) is selected from a joint probability
distribution p. We assume full support, i.e., p(v) > 0 for every v ∈ Bn. The
function p induces functions pi; for each i ∈ N and vi ∈ B, pi(vi) is the marginal
probability that agent i has type vi. We say that we have an independent
values setting if for every v we have that p(v) = Πn

i=1pi(vi). We say that
we have a (strictly) correlated values setting if for every agent i, there exists
b−i ∈ Bn−1 such that p(v−i = b−i|vi = 0) 6= p(v−i = b−i|vi = 1), where
v−i = (v1, . . . , vi−1, vi+1, . . . , vn). In intuitive terms, in the independent values
setting the type of an agent does not tell it anything about the types of others,
while in a correlated values setting it does.

Given a function w : Bn → B, we consider the following protocol:

1. For any instantiated type vector v ∈ Bn, each agent i declares his type v̂i

to the center (truthfully or not; v̂i = vi may or may not hold).

2. The center computes the value w(v̂) = w(v̂1, . . . , v̂n) and announces it to
all agents.

3. Each agent i computes w(v) based on w(v̂) and vi (his true input).

The protocol defines a strategy space for each agent. A pure strategy for
agent i is a pair of functions (fi, gi). fi : B → B, the declaration function, de-
termines the input declared to the center based on the true input. Of particular
interest will be the truthful declaration function, namely the identity function
f t(v) = v. gi : B2 → B, the interpretation function, is used by the agent to
decide on the value of the function based on the announcement by the center
and his true input. Of particular interest will be the trusting interpretation
function, namely the projection function gt(v1, v2) = v1 in which the agent sim-
ply accepts the value announced by the center. We will call the strategy (f t, gt)
straightforward.
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Note that the strategy profile4 consisting only of straightforward strategies
results in each agent’s computing w correctly for all input vectors. We are in-
terested in functions for which such a strategy profile forms an equilibrium. In
this equilibrium, for each agent the straightforward strategy is a best response
to all other agents’ adopting the straightforward strategy. Of course, whether
a strategy is a best response depends on the agent’s preferences. The defini-
tion below captures the lexicographic ordering in each agent’s preference, with
correctness preceding exclusivity.

Throughout this paper, as we did for v−i above, for any vector (x1, . . . , xn)
we define
x−i = (x1, . . . , xi−1, xi+1, . . . , xn). We also use (xi, x−i) to denote the reconsti-
tuted vector (x1, . . . , xn). For simplicity, we will often use z(xi, x−i) to denote
the application of a function z to the vector (xi, x−i), rather than the more
cumbersome z((xi, x−i)). The following definition applies to any domain B,
though again we are concentrating on the Boolean domain B = {0, 1}.

Definition 1 Let N , p, w be as above. Then w is deterministically non-
cooperatively computable5, or D-NCC, if the following holds: For any agent
i, every strategy (fi, gi), and every vi ∈ B, it is the case that:

– either there exists v−i ∈ B−i such that gi(w(fi(vi), v−i), vi) 6= w(vi, v−i),

– or else for every v−i ∈ B−i we have w(fi(vi), v−i) = w(vi, v−i).

Note that the definition assumes that agents only care whether all other
agents compute correctly, or whether at least one of them does not. The defi-
nition takes no stance on whether the agent distinguishes among outcomes in
which different nonempty sets of agents miscompute, or among outcomes in
which the agent itself miscomputes.

Two final comments about D-NCC. In D-NCC there is no discretion in
designing the center’s part of the protocol, and so mechanism design reduces
to equilibrium verification. In the more elaborate versions – P-NCC and S-
NCC – there will be more discretion in this regard. Also, note that we have not
considered more elaborate interaction among the players and the center, beyond
this simple two-phase communication. Full discussion of this point lies outside
the scope of the article, and the reader can take this as an arbitrary restriction.
However, the reader familiar with the revelation principle [5] will recognize that
in fact no generality is lost by restricting the attention to this class of protocols.

4A strategy profile is vector of strategies, one for each agent.
5Under lexicographic ordering of correctness and exclusivity; we omit this comment in

future definitions.
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2.2 From D-NCC to P-NCC

We will define two extensions of the basic D-NCC setting. In this section we
discuss a probabilistic extension, termed P-NCC. This is a natural extension
from the computer science perspective; in the next section we discuss a different
extension that is natural from the game theoretic perspective.

In P-NCC we still look for equilibria in which agents adopt the straightfor-
ward strategy, but we allow the center – with some probability – to announce
to the agents an incorrect value. We now have greater flexibility in deciding the
protocol for the center. Rather than compute w, the center will compute n func-
tions hi, one for each agent (that is, given a declared type vector v̂, the center
will announce to agent i the value hi(v̂)). In general we will have that hi 6= w.
Furthermore, in general hi will be probabilistic; that is, hi : Bn → ∆(B), where
∆(B) is the set of probability distributions over B.

For j 6= i, define

Ej(i, fi, gi) = Σ(vi,v−i)∈Bn [p(vi, v−i)Prob(w(v) 6= hj(fi(vi), v−i))]

as the probability of agent j ending up with the wrong value of w, assuming all
agents other than i follow the truthful equilibrium protocol, while i’s strategy
is (fi, gi). Note that in this expression, the expectation is taken both over p
(the joint probability distribution over the inputs), and over Prob (which is
determined by the probabilistic function hj).

Of course, in the expression above Ej does not depend on gi. However,
we use this notation so that we can overload it, and apply it when i = j as
well. This case, which captures i’s estimation of his own probability of error, is
defined by:

Ei(i, fi, gi) = Σ(vi,v−i)∈B [p(vi, v−i)Prob(w(vi, v−i) 6= gi(hi(fi(vi), v−i), vi))]

In the following definition, let f t and gt again denote the identity and pro-
jection functions, respectively.

Definition 2 Let N , p, w, and Ej be as above. Let 0 < δ ≤ 1. Then w is
probabilistically non-cooperatively computable with accuracy δ, or δ-P-NCC,
if there exist hi such that the following both hold:

– For every i ∈ N and v ∈ Bn, Prob[w(v) 6= hi(v)] < δ

– For any agent i and any strategy (fi, gi),

– either Ei(i, fi, gi) > Ei(i, f t, gt),

– or else the following are both true:
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– Ei(i, fi, gi) = Ei(i, f t, gt), and
– Ej(i, fi, gi) ≤ Ej(i, f t, gt) for some agent j 6= i.

In other words, again the straightforward strategy is a best response to the
other agents’ adopting the straightforward strategy; deviating either increases
one’s own probability of error, or leaves it unchanged while not increasing the
error probability of others. In addition, we require a δ upper bound on the
probability of error.

The non-relativized notion of P-NCC is then defined as follows:

Definition 3 Let N , p, w be as above. Then w is probabilistically non-cooperatively
computable, or P-NCC, if w is δ-P-NCC for any 0 < δ ≤ 1 .

2.3 From D-NCC to S-NCC

So far we have assumed that the agents only derive utility from computing the
function, or denying others that benefit. We now add another ingredient to
the mix, namely money. As in D-NCC we require that the center compute the
function correctly; here again there is no discretion in this regard. However, in
addition we give the center the power to allocate money to the agents by way of
injecting additional incentives into the system. If the probabilistic extension in
the previous subsection is natural in computer science, this extension is natural
in economics and game theory. This subsidized variant of NCC is termed S-
NCC.

Specifically, in S-NCC, as in D-NCC, the center is restricted to computing
w(v̂) and announcing the result to the agents. But in addition, the center has
n (commonly known) payment functions mi : Bn → <; mi(v̂) is the payment
from the center to agent i as a function of the declared values by all agents. In
general, the payment mi(v̂) can be positive or negative, and be of arbitrary mag-
nitude. However, we will be interested in mechanisms in which in expectation
the payment is positive, and small.

Agent i has an error cost, which we normalize to be 0 if the computation is
correct, and 1 otherwise. The overall utility function of an agent who receives
payment m and suffers error cost d is simply m− d. This so-called quasi-linear
utility function [5] might raise two potential questions. First, one might wonder
why it is reasonable to normalize different agents’ utilities on the same scale.
The answer is that in our game theoretic analysis, inter-agent comparison of
utilities is not meaningful and does not impact equilibrium analysis. Second,
one might ask why it is meaningful to correlate the scales of the error cost with
the scale of money. The answer is that in some circumstances this could indeed
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be an important issue, but in the equilibria we will identify the amount of money
is arbitrarily small, and dominated by the error.6

Note that in S-NCC the strategy space of agents is larger that in D-NCC (or
P-NCC). Specifically, any interpretation function gi is now gi : B×<×B → B;
the additional second argument is the payment received by the center. We ex-
tend the notion of the trusting interpretation function to the S-NCC setting in a
natural way; continuing to use gt to denote the trusting interpretation function,
we define gt(r, x, v) = r. The space of declaration functions remains unchanged
in S-NCC, and we continue to denote the truthful declaration function by f t.
Finally, we continue to use the term straightforward strategy for (f t, gt) as in
the D-NCC and P-NCC settings.

For convenience, we will slightly overload the mi function.

Given an input vector v and i’s declaration strategy fi, let

mj(i, v, fi) = mj(fi(vi), v−i)

be the payment to agent j, assuming all other agents, excluding i, declare truth-
fully. Then, for any vi ∈ B, define

Emj(i, vi, fi) = Σx∈Bn [p(x | xi = vi)mj(i, x, fi)]

as the expected payment to agent j under the same conditions, conditional on
agent i’s input being vi.

Next we define dj(i, v, fi, gi) to be the error cost to agent j when the input
vector is v, and when all agents but i play the straightforward strategy (f t, gt)
while i plays the pure strategy (fi, gi):

for j 6= i: dj(i, v, fi, gi) = 0, if w(v) = w(fi(vi), v−i)
= 1, otherwise

for j = i: dj(i, v, fi, gi) = 0, if w(v) = gi(w(fi(vi), v−i), mi(i, v, fi), vi)
= 1, otherwise

For any i, j, the direct utility for j given the input vector and i’s strategy is
given by

uj(i, v, fi, gi) = mj(i, v, fi)− dj(i, v, fi, gi)

and the expected version, conditional on i’s value by

Euj(i, vi, fi, gi) = Emj(i, vi, fi)− Edj(i, v, fi, gi).

With these definitions we define S-NCC as follows.
6An alternative definition, which would obviate these questions, would be to keep the

monetary payoff separate, and extend the two-tiered lexicographic preference structure to a
three-tiered one, with correctness and monetary payoff both preceding exclusivity (the order-
ing between monetary payoff and correctness would be unimportant for our purposes). All
our results would still hold under this model. However, it is convenient to amalgamate the
first two into a direct overall utility function, and the quasi-linear model is both natural and
commonly used.
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Definition 4 Let N , p and w be as above. Let ε > 0. Then w is non-
cooperatively computable with subsidy ε, or ε-S-NCC, if there exist payment
functions mi as above for which the following holds for any agent i, any strategy
(fi, gi) of i, and every vi ∈ B:

– either Eui(i, vi, fi, gi) < Eui(i, vi, f
t, gt)

or else the following are both true:

– Eui(i, vi, fi, gi) = Eui(i, vi, f
t, gt), and

– Edj(i, vi, fi, gi) ≥ Edj(i, vi, f
t, gt) for some agent j 6= i.

– 0 ≤ Emj(i, v, f t) ≤ ε for every i, j ∈ N and every v ∈ Bn.

As in previous definitions, this one requires that it is an equilibrium for all
agents to adopt the straightforward strategy. Note that this definition assumes
that an agent cares about his error cost and his monetary payoff, as well as the
error cost of the other agents, but not about the payments to the other agents.

Finally, analogously to the case of P-NCC, we define the non-relativized
version of S-NCC:

Definition 5 Let N , p and w be as above. A function w is subsidized non-
cooperatively computable, or S-NCC, if w is ε-S-NCC for every ε > 0.

3 Results for Boolean functions

Our goal in this section is to precisely characterize the Boolean NCC functions.
We will provide six characterizations – of functions that are D-NCC, P-NCC,
and S-NCC, each for both the independent values case and the correlated values
one.

We will need the following notions.

• A function w : Bn → B is called (conditionally) dominated if there exist
an agent i and a vi ∈ B such that

1. for all y−i, z−i ∈ Bn−1, it is the case that w(vi, y−i) = w(vi, z−i);
and

2. vi is relevant, in that there exists y−i ∈ Bn−1 such that w(vi, y−i) 6=
w(1− vi, y−i)
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• A function w is reversible if there exist i ∈ N and vi ∈ B such that for
every y−i ∈ Bn−1 it is the case that w(vi, y−i) = 1− w(1− vi, y−i).7

Note: These definitions are reminiscent of, but different from, definitions
in the social choice literature (e.g., [8]). We comment on this further in the
discussion section.

3.1 Independent values

Our basic result concerns D-NCC:

Theorem 1 In an independent values setting, a Boolean function is D-NCC iff
it is not reversible and not dominated.

Proof: Assume that the function w is reversible. Then there exists an
agent i such that w(0, y−i) = 1 − w(1, y−i), for all y−i ∈ Bn−1. Suppose all
agents but i employ the straightforward strategy (f t, gt). Then (f t, gt) is not
a best response for i. A better response is (fi, gi) where fi(vi) = 1 − vi and
gi(y, vi) = 1−y, for all vi, y ∈ B (this better response ensures that other agents
always miscompute w but i never does). This proves that if w is reversible then
it is not D-NCC.

Next assume that the function w is dominated. Then, there exist an agent
i, and vi ∈ B such that w(vi, y−i) = w(vi, z−i) = d for every y−i, z−i ∈ Bn−1,
and there exists x−i ∈ Bn−1 such that w(vi, x−i) 6= w(1− vi, x−i). Suppose all
agents but i employ the straightforward strategy (f t, gt). Then again (f t, gt) is
not a best response for i. A better response is (fi, gi) which differs from (f t, gt)
only in that fi(vi) = 1− vi, and gi(y, vi) = d for all y ∈ B (this better response
ensures that other agents miscompute w(vi, xi) but i does not). This proves
that if w is dominated then it is not D-NCC.

Finally, assume that the function w is neither reversible nor dominated.
Consider agent i with strategy (fi, gi), and suppose all agents but i employ
the straightforward strategy (f t, gt). Clearly, if i is irrelevant to w – that is,
if w(0, y−i) = w(1, y−i) for all y−i ∈ Bn−1 – then (fi, gi) = (f t, gt) is a best
response for i. So assume that i is relevant, and assume further that fi 6= f t.
Suppose agent i has the true input vi, and declares value fi(vi) = 1 − vi, and
the center announces the value r. What could the value of gi(r, vi) be? Since w
is not dominated and since i is relevant, it cannot be that gi(r, vi) = r without

7Note that for Boolean functions it is the case that if this property holds for vi then it
also holds for 1− vi. Also note that among the symmetric functions, only the parity function
(whose value is 1 iff an even number of its arguments are 1) and its negation are reversible,
but there are many other non-symmetric reversible functions.
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causing i to miscalculate for some inputs of the others. But at the same time
it cannot be that gi(r, vi) = 1 − r, since this would imply that w is reversible.
From this contradiction it follows that necessarily fi = f t. But clearly if fi = f t

then (fi, gi) = (f t, gt) is a best response for i (if all agents including i declare
truthfully, i only loses by deviating from the trusting interpretation function).
The proves that if w is neither reversible nor dominated then it is D-NCC.

P-NCC was introduced with the hope of increasing the power of NCC. The
next result is disappointing in this respect, at least for the independent values
context (but see the results for correlated values below):

Theorem 2 In an independent values setting, a Boolean function is P-NCC if
and only if it is D-NCC.

Proof: Consider a Boolean function w. Trivially, if w is D-NCC then it is also
P-NCC. Since a function is D-NCC iff it is neither dominated nor reversible,
it is sufficient to show that if w is either dominated or reversible then it is not
P-NCC.

Assume that w is dominated. Then, there exist i ∈ N , d, vi ∈ B, such that
for all y−i, z−i ∈ Bn−1 and some x−i ∈ Bn−1 it is the case that w(vi, y−i) =
w(vi, z−i) = d, while w(1− vi, x−i) = 1− d. Assume that w is P-NCC. Let 0 <
δ < 1; then w is δ-P-NCC. This means that there exist functions hi (i = 1..n) for
the center such that for each instance v ∈ Bn, Prob[hi(v) 6= w(v)] < δ. Assume
that all agents j 6= i play the straightforward strategy (f t, gt); it is enough to
show that the straightforward strategy is not a best response for i. Consider
the following strategy (fi, gi): fi(vi) = fi(1− vi) = 1− vi, and for both r ∈ B,
gi(r, vi) = d while gi(r, 1−vi) = r. We will show that (fi, gi) is a better response
than (f t, gt). Clearly Ei(i, fi, gi) ≤ Ei(i, f t, gt). If Ei(i, fi, gi) < Ei(i, f t, gt)
then we are done; (fi, gi) is a better response for i than (f t, gt). So suppose
Ei(i, fi, gi) = Ei(i, f t, gt). To show that (f t, gt) is not a best response in this
case either, we need to show that Ej(i, fi, gi) > Ej(i, f t, gt) for some j 6= i. But
now consider x−i above, for which w(1− vi, x−i) = 1− d. Pick any agent j 6= i.
Let Prob[hj(1−vi, x−i) = d] = q. For the straightforward strategy profile to be
an equilibrium, it would have to be that q < δ (or else agent j would err with
probability greater than δ on w(1− vi, x−i), contradicting the definition of δ-P-
NCC). Now consider Ej(i, fi, gi), and define r = p(vi, x−i), the probability of the
specific input vector (vi, x−i). It must be the case that Ej(i, fi, gi) ≥ r(1− q),
since (a) Ej(i, fi, gi) must be at least r times the probability that the center will
announce to j the wrong value for this specific input (recall that according to
fi, for this input i announces 1− vi), and (b) since the center announces d with
probability q, it announces 1−d with probability 1−q. And thus Since q < δ, we
have that Ej(i, fi, gi) ≥ r(1−δ). However, for δ < r

1+r we have that r(1−δ) > δ,
and so for small enough δ we have that Ej(i, fi, gi) > δ > Ej(i, f t, gt). This
concludes the proof that if w is dominated then it is not P-NCC.
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Now assume that w is reversible. Then, there exist i ∈ N, vi ∈ B, such
that w(vi, z−i) = 1 − w(1 − vi, z−i) for every z−i ∈ Bn−1. Assume that w is
P-NCC. Let 0 < δ < 1; then w is δ-P-NCC. Again, this means that there exist
functions hi for the center such that for each instance v ∈ Bn, Prob(hi(v) 6=
w(v)) < δ. Assume that all agents j 6= i play the straightforward strategy
(f t, gt); it is enough to show that the straightforward strategy is not a best
response for i. Let µ1 = Σz−i∈Bn−1p(z−i)Prob(w(vi, z−i) 6= hi(vi, z−i)) and
µ2 = Σz−i∈Bn−1 [p(z−i)(Prob(w(1− vi, z−i) 6= hi(1− vi, z−i)))].8

If µ1 > µ2, consider a deviation by i from the straightforward strategy to (fi, gi)
where fi(vi) = fi(1−vi) = 1−vi and for both r ∈ B, gi(r, vi) = 1−r while
gi(r, 1− vi) = r. We get that Ei(i, fi, gi) < Ei(i, f t, gt) and therefore the
straightforward strategy in not a best-response.

If µ2 > µ1, consider a deviation by i from the straightforward strategy to
(fi, gi) where fi(vi) = fi(1 − vi) = vi, and for both r ∈ B, gi(r, vi) = r
while gi(r, 1 − vi) = 1 − r. We get that Ei(i, fi, gi) < Ei(i, f t, gt) and
therefore again the straightforward strategy in not a best-response.

Finally, if µ1 = µ2, consider a deviation by agent i as in the case in which µ1 >
µ2 above, i.e., a deviation to (fi, gi) where fi(vi) = fi(1− vi) = 1− vi and
gi(r, vi) = 1− r, gi(r, 1−vi) = r, for any r ∈ B. We get that Ei(i, fi, gi) =
Ei(i, f t, gt). The proof now proceeds as in the proof for the dominated case
(the following is an abridged version of that proof; the full proof can be
substituted in here verbatim). To show that (f t, gt) is not a best response
in this case either, we need to show that Ej(i, fi, gi) > Ej(i, f t, gt) for
some j 6= i. Consider x−i ∈ Bn−1 that satisfies d = w(vi, x−i) and
1 − d = w(1 − vi, x−i). Let Prob[hj(1 − vi, x−i) = d] = q. For the
straightforward strategy profile to be an equilibrium, it would have to
be that q < δ (or else agent j would err with probability greater than δ
on w(1− vi, x−i), contradicting the definition of δ-P-NCC). Now consider
Ej(i, fi, gi), and again define r = p(vi, x−i). As before, it must be the case
that Ej(i, fi, gi) ≥ r(1 − q). But since q < δ, we have that Ej(i, fi, gi) ≥
r(1 − δ), and thus for small enough δ we have that Ej(i, fi, gi) > δ >
Ej(i, f t, gt). This concludes the proof that if w is reversible then it is not
P-NCC.

Finally, we consider the power of subsidies:

Theorem 3 In an independent values setting, a function is S-NCC if and only
if it is not reversible.

8Note that in the independent values setting, p(z−i) = p(z−i | vi).
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Proof: From Theorem 1 we know that a function is D-NCC iff it is not domi-
nated and not reversible. Since any function that is D-NCC is also S-NCC, it is
enough to show that (a) dominated, non-reversible functions are always S-NCC,
and (b) reversible functions are never S-NCC.

The constant functions are non-dominated and non-reversible and therefore
S-NCC (and even D-NCC), which is consistent with our theorem, and therefore
in the remainder of the proof we will consider only non-constant functions.

Let w be any non-constant Boolean function. We will first show that if w
is dominated and non-reversible then it is S-NCC. That is, we show that for
any given ε > 0, there exists payment functions mj (j = 1..n) such that for
every agent i, if all agents j 6= i play the straightforward strategy (f t, gt), then
(f t, gt) is the best response for i; and that furthermore under these payment
functions the expected payment to any agent is bounded by ε. We will prove
this by construction. If agent i is irrelevant or there is no vi ∈ B such that
w(vi, z−i) = w(vi, y−i) for all y−i, z−i ∈ Bn−19 then we take the payment to i
to be identically 0. Since w is also non-reversible the best response for agent i
is to use (f t, gt); this is exactly the proof as for the D-NCC case. Now consider
an agent i with type vi ∈ B, such that w(vi, z−i) = d for every z−i ∈ Bn−1.
Given that w is not a constant function and is not reversible then it must
be the case that there exist y−i, z−i ∈ Bn−1 such that d = w(1 − vi, y−i) 6=
(1− vi, z−i) = 1− d. We determine the payment for agent i by mi(vi, z−i) = δ,
and mi(1 − vi, z−i) = 0, for every z−i ∈ Bn−1, where 0 < δ < ε as will be
determined below. Suppose that agent i deviates to (fi, gi), and that his type
is is 1− vi. Then, there exist y−i, x−i ∈ Bn−1 such that w(1− vi, y−i) = d and
w(1 − vi, x−i) = 1 − d. If fi(1 − vi) = 1 − vi, then if gi(r, 0, 1 − vi) = 1 − r
for some r ∈ B then Eui(i, 1 − vi, fi, gi) < 0 = Eui(i, 1 − vi, f

t, gt) since such
deviation will only cause miscomputation by i with non-zero probability. If
fi(1 − vi) = vi then the output received from the center will be d and the
payment to the agent is δ. Let r1 = p(1− vi, y−i) and let r2 = p(1− vi, x−i). If
gi(d, δ, 1−vi) = d then agent i’s computed output is wrong with probability of at
least r2, and if gi(d, δ, 1− vi) = 1− d then its output is wrong with probability
of at least r1. By taking δ < min(r1, r2) we get that Eui(i, 1 − vi, fi, gi) ≤
δ − min(r1, r2) < 0 = Eui(i, 1 − vi, f

t, gt) whenever fi(1 − vi) = vi and for
every gi. Together we get Eui(i, 1 − vi, fi, gi) < Eui(i, 1 − v, f t, gt) for every
(fi, gi) 6= (f t, gt). Now assume that agent i’s type is vi. If fi(vi) = 1 − vi

then Eui(i, vi, fi, gi) < δ = Eui(i, vi, f
t, gt). If fi(vi) = vi and gi(d, δ, vi) =

1 − d then Eui(i, vi, fi, gi) ≤ δ − 1 < δ = Eui(i, vi, f
t, gt). Together we get

Eui(i, vi, fi, gi) < Eui(i, vi, f
t, gt) for every (fi, gi) 6= (f t, gt).

Given the above, and since δ < ε we get that w is ε-S-NCC. Since this is
true for any ε > 0, this proves that if any dominated, non-reversible function is

9Note that this case is not precluded by the fact that w is dominated; it simply cannot be
that all agents have these properties.
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S-NCC.

We now show that any reversible function is not S-NCC. Assume that w
is reversible. In this case, there exist an agent i, and type vi of agent i, such
that w(vi, y−i) = 1 − w(1 − vi, y−i) for every y−i ∈ Bn−1. Assume that all
agents, potentially excluding i, use the straightforward strategy (f t, gt). Let
µ0 = Eui(i, 0, f t, gt) and let µ1 = Eui(i, 1, f t, gt). If µ0 > µ1 then deviating
to (fi, gi), where fi(0) = fi(1) = 0, gi(0, t, 0) = 0, gi(1, t, 0) = 1, gi(0, t, 1) =
1, gi(1, t, 1) = 0 (for every t) satisfies Eui(i, 1, fi, gi) > Eui(i, 1, f t, gt). Simi-
larly, if µ0 < µ1 then deviating to (fi, gi), where fi(0) = fi(1) = 1, gi(0, t, 0) =
1, gi(1, t, 0) = 0, gi(0, t, 1) = 0, gi(1, t, 1) = 1 (for every t) satisfies Eui(i, 0, fi, gi) >
Eui(i, 0, f t, gt). Thus it is enough to consider the case in which µ0 = µ1. Let us
consider deviation to (fi, gi), where fi(0) = fi(1) = 0, gi(0, t, 0) = 0, gi(1, t, 0) =
1, gi(0, t, 1) = 1, gi(1, t, 1) = 0 (for every t). In this case Eui(i, vi, f

t, gt) =
Eui(i, vi, fi, gi) for every vi ∈ B. However, agent j 6= i will then compute a
wrong answer whenever agent i’s type is 1, which happens with some positive
probability. Hence, Edj(i, 1, fi, gi) > 0 = Edj(i, 1, f t, gt), and w is not S-NCC.

3.2 Correlated values

Intuitively speaking, in a correlated values setting we would expect more func-
tions to be NCC than in the independent values case, since more information
is conveyed by the private information. Imagine that the values to agents are
assigned as follows: With probability p

2 all agents are assigned 1, with proba-
bility p

2 all agents are assigned 0, and with probability 1 − p each agent’s type
is independently and uniformly selected from B. Imagine furthermore that p is
large, for example 98%. Now if a given agent has the private value 1 he knows
that with high probability the other agents do as well, and thus can predict
with high degree of accuracy the value of the function.

It is straightforward to see, given that in the correlated values setting there
is still non-zero probability of every vector of types, that the set of D-NCC
functions remains unchanged in the correlated values case:

Theorem 4 In a correlated value setting, a Boolean function is D-NCC iff it
is not dominated and not reversible.

The proof is identical to the proof in the independent values case, and is
omitted.

In the remaining cases, however, correlated values do yield greater computing
power. For reasons that will become clear, we skip P-NCC for the moment and
speak about S-NCC. We have the following theorem:
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Theorem 5 In a correlated values setting, any Boolean function is S-NCC.

Proof: Consider an arbitrary ε > 0. We will show that any Boolean function
is ε-S-NCC in the correlated values case. By the definition of correlated values,
we have that Prob[v−i = y−i|vi = 0] 6= Prob[v−i = y−i|vi = 1] for some
y−i ∈ Bn−1. Let pi,l = min(Prob[v−i = y−i|vi = 1], P rob[v−i = y−i|vi = 0]),
pi,h = max(Prob[v−i = y−i|vi = 1], P rob[v−i = y−i|vi = 0]). Let vi,h and vi,l

be the types of agent i corresponding to pi,h and pi,l, respectively.

The proof is again by construction, and we set the payment functions as
follows. An agent who announces vi,l gets nothing: mi(vi,l, z−i) = 0 for every
z−i ∈ Bn−1. However, an agent who announces vih

gets a lottery, whose value is
positive only under truthful declaration: mi(vi,h, y−i) = εi +1 (recall that y−i is
fixed here), and mi(vi,h, z−i) = εi− pi,h

1−pi,h
for every z−i 6= y−i, where 0 < εi < ε,

and εi < (1− pi,l)(
pi,h

1−pi,h
)− pi,l. Observe that (1− pi,l)(

pi,h

1−pi,h
)− pi,l > 0.

If all agents use the straightforward strategy (f t, gt) then the payment to
agent i with type vi,l is 0, and the expected payment to agent i with type vi,h

is pi,h(εi + 1) + (1 − pi,h)(εi − pi,h

1−pi,h
) = εi < ε, as required. Consider a devia-

tion by agent i from (f t, gt) to (fi, gi). Since Eui(i, v, f t, gi) ≤ Eui(i, v, f t, gt)
and Edj(i, v, f t, gi) = Edj(i, v, f t, gt) for every v ∈ B and j 6= i (such devi-
ation will not change the payment to i and the fact the others will compute
correctly, but might only make i compute incorrectly), it is enough to consider
deviations where fi 6= f t. If agent i submits vi,l while his type is vi,h then he
will be paid nothing instead of getting an expected payment of εi (and com-
puting with no error) if he were to use the straightforward strategy. Therefore,
Eui(i, vi,h, fi, gi) < Eui(i, vi,h, f t, gt). Conversely, if agent i submits vi,h when
his type his vi,l then his expected payment is εi + pi,l − (1 − pi,l)

pi,h

1−pi,h
. The

latter however is negative, since pi,l− (1−pi,l)
pi,h

1−pi,h
< pi,l−pi,h < 0, and since

we have selected εi < (1 − pi,l)(
pi,h

1−pi,h
) − pi,l. This implies (since with (f t, gt)

we get accurate computation and the above payments) that Eui(i, vi,l, fi, gi) <
Eui(i, vi,l, f

t, gt).

From this it follows that w is ε-S-NCC. Furthermore, this is true for any
ε > 0, and therefore w is S-NCC.

We now turn to the remaining case, that of P-NCC. The positive result for
S-NCC inspires us to look for a similar mechanism for the center, where the
power of randomization compensates for the lack of monetary incentives. It
turns out that the ability to randomize is not quite as powerful as the ability to
print money, but it is not without power:

Theorem 6 In a correlated values setting, a Boolean function is P-NCC if and
only if it is not dominated.
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Proof: The proof that dominated functions are not P-NCC is as in the in-
dependent values case; the correlation among the values plays no role in this
direction.

For the other direction, assume that a function is not dominated. Let ε > 0.
We will show that w is δ-P-NCC. If is sufficient to show that w is δ-P-NCC
for for sufficiently small δ, in particular for δ < 0.5. We will make use of the
following definitions:

Given a Boolean function w we distinguish between three types of agents:

1. Agent i is a reverser if for v ∈ B we have that w(vi, z−i) = 1−w(1−
vi, z−i) for every z−i ∈ Bn−1.

2. Agent i is irrelevant if for every v ∈ B, z−i ∈ Bn−1 we have that
w(v, z−i) = w(1− v, z−i)

3. Agent i is simple if it is not a reverser and not irrelevant.

By the definition of correlated values, we have that Prob[v−i = y−i|vi = 0] 6=
Prob[v−i = y−i|vi = 1] for some y−i ∈ Bn−1. Let pi,l = min(Prob[v−i =
y−i|vi = 1], P rob[v−i = y−i|vi = 0]), pi,h = max(Prob[v−i = y−i|vi =
1], P rob[v−i = y−i|vi = 0]). Let vi,h and vi,l be the types of agent i
corresponding to pi,h and pi,l, respectively.

Let qi be a random variable that gets the value γi if y−i is declared by
the agents in N−i and − pi,h

1−pi,h
γi otherwise, where γi > 0 satisfies that

max(γi,
pi,h

1−pi,h
γi) < δ

3 . The expected value of qi is 0 if agent i has the
type vi,h and is γi(pi,l − (1− pi,l)

pi,h

1−pi,h
) < γi(pi,l − pi,h) < 0 if i has type

vi,l. Pick δi > 0 such that 0 < δi < min(γi(pi,h − pi,l), δ
3 ).

We now construct the functions hi as follows. For any declaration vector v̂,
the center announces to agent i the value w(v̂) with probability si, and 1−w(v̂)
with probability 1− si, where si is determined as follows:

• If i is simple, si = 1.

• Otherwise (i is not simple), let the declared types be v̂ = (v̂1, . . . , v̂n). If
v̂i = vi,h then si = 1 − 2

3δ + δi + qi where the value of qi is determined
based on whether the other agents declared y−i or not. Otherwise (if
v̂i = vi,l), si = 1 − 2

3δ. Observe that our selection of parameters satisfy
that 0.5 < 1− δ < si < 1.

Now consider agent i, with type vi ∈ B, and the potential deviations of it to
(fi, gi) 6= (f t, gt).
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• When the agent is simple then since w is also not dominated, we get that
Ei(i, fi, gi) > Ei(i, f t, gt) for every (fi, gi) 6= (f t, gt); the proof is identical
to the proof that non-dominated non-reversible functions are D-NCC (and
the inequality is strict since we are considering only relevant agents).

• In order to deal with non-simple agents, we introduce the following con-
struct. For i ∈ N, vi ∈ B let ti(vi, d) = Σz−i∈Bn−1p(vi, z−i)Prob(w(d, z−i) 6=
hi(d, z−i)), i.e. ti(vi, d) is the probability the center will announce to i the
right answer for the input it receives when i declares d and his type is
vi. Note the subtle definition: ti refers only to correctness relative to the
declared values. However, both d and vi are relevant to assessing this cor-
rectness: d determines i’s declaration, and vi induces a probability over
the remaining declarations, given the joint distribution p over the inputs
and the fact that the remaining agents play the straightforward function.

We now first show that for any non-simple agent i and vi ∈ B we have
that ti(vi, 1− vi) < ti(vi, vi). Assume that a non-simple agent i, who has
the type vi,l, declares vi,h instead. Then the center will announce to him
the right answer with probability 1− 2

3δ + δi + γi(pi,l− (1− pi,l)
pi,h

1−pi,h
) <

1− 2
3δ + δi−γi(pi,h− pi,l) < 1− 2

3δ = ti(vi,l, vi,l). Assume that i has type
vi,h but declares vi,l. In this case the center will announce to i the right
answer with probability 1− 2

3δ, but has he declared vi,h the center would
have announced the right answer with probability 1− 2

3δ + δi + pi,h− (1−
pi,h) pi,h

1−pi,h
= 1− 2

3δ + δi > 1− 2
3δ. Hence, we get that for any non-simple

agent i and vi ∈ B we have that ti(vi, 1− vi) < ti(vi, vi).

Assume i is a non-simple agent who uses the strategy (fi, gi) instead of the
straightforward strategy (f t, gt), while all other agents use the straight-
forward strategy:

– If i is irrelevant, and since ti(vi, d) > 0.5 for every vi, d ∈ B, then for
every fi we have that Ei(i, fi, g

t) < Ei(i, fi, gi) where gi 6= gt. Since
ti(vi, 1 − vi) < ti(vi, vi) for every vi ∈ B we get that Ei(i, f t, gt) <
Ei(i, fi, g

t) < Ei(i, fi, gi) for every fi 6= f t and gi 6= gt. Hence we
get that Ei(i, f t, gt) < Ei(i, fi, gi) for every (fi, gi) 6= (f t, gt) when
agent i is irrelevant.

– If i is a reverser, then if it declares 1− vi when his type is vi, and is
announced r by the center, then since w(vi, z−i) = 1−w(1− vi, z−i)
for every z−i ∈ Bn−1 we should have gi(r, 1 − vi) = 1 − r in order
that deviation to (fi, gi) would be potentially profitable (otherwise
agent i will compute the right answer with probability less than 0.5).
This implies that the probability of computing the right answer by
i when he uses (fi, gi) where fi(v) = 1 − vi and his type is vi is
at most ti(vi, 1 − vi), while when following (f t, gt) he will compute
the correct answer when his type is vi with probability ti(vi, vi) >
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ti(vi, 1 − vi). Hence we get that Ei(i, f t, gt) < Ei(i, fi, gi) for every
(fi, gi) 6= (f t, gt) when agent i is a reverser.

Since the probability of providing the right answer is always greater than
1 − δ, and for every agent i we have that Ei(i, f t, gt) < Ei(i, fi, gi) for every
(fi, gi) 6= (f t, gt), we have that w is δ-P-NCC. Since the above construction
is defined for any sufficiently small error probability δ > 0, we get that w is
P −NCC.

4 Discussion

In this paper we introduced the concept of non-cooperative computing (NCC),
and defined three flavors of it – deterministic (D-NCC), probabilistic (P-NCC),
and subsidized (S-NCC). The NCC framework is very broad, and one of our
goals has been to simply put it on the research map. In addition, we provided
a comprehensive analysis of the class of Boolean functions that are NCC when
the utility function of agents is defined by correctness and exclusivity, ordered
lexicographically. For this case our results are summarized in the following table
(each cell in the table specifies the necessary and sufficient conditions for the
function to be NCC in the corresponding setting):

D-NCC P-NCC S-NCC
independent not reversible & not reversible & not
values not dominated not dominated reversible
correlated not reversible & not any
values not dominated dominated

We have restricted our results to Boolean functions. This was done in order
to make our discussion more concrete, while concentrating on a class of functions
that is central in computer science. Nevertheless, our definitions can be easily
extended to more general domains, and further results shown. For example, with
appropriate extension of the definitions, it can be shown that in the independent
values setting, the k-order statistic is D-NCC for 1 < k < n, while the max and
min functions are not D-NCC; however, the max and min functions are S-NCC.
However, pursuing these extensions is beyond the scope of this article.

As we discussed in the introduction, the NCC framework is quite distinct
from other frameworks, and in particular from those encountered traditionally in
cryptography. Let us nonetheless conclude with an open question regarding an
interesting potential three-way connection between NCC, social-choice theory
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[8], and a specific notion related to cryptography, namely variable influence
[3, 4]. We will not repeat the definitions or results from these areas, and so these
comments will be meaningful particularly to the reader familiar with one or both
of these fields. Indeed, such a reader will undoubtedly have noticed the surface
similarity, as well as the deep differences. In particular, both social choice and
variable influence appeal to the notion of dictatorship, which is stronger than
our notion of (conditional) dominance. Conversely, the most elegant proofs of
the seminal result in social choice theory – Arrow’s impossibility theorem [1, 9]
– use the notion of a ‘pivotal agent’, which in some sense is a weaker notion than
our notion of a reverser agent and the related notion of function reversibility.
And so at this stage we can point to no crisp technical connections between NCC
and either social choice theory or variable influence. By the same token, there
are to date no established connections between social choice theory and variable
influence, despite the fact that such connections were one of the motivations for
studying variable influence10. These three pairwise connections seem to us to
merit further investigation.
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