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1. Introduction

This article concerns combinatorial auctions (also called combinational), that is,
auctions in which multiple goods are available and in which bidders can post bids
for subsets (i.e., bundles) of the goods. Such auctions have become the object of
increased interest recently, in part because of the general interest in auctions, and
in part because of specific auctions in which combinatorial bidding would seem
natural, such as the series of the FCC spectrum auctions [McMillan 1994; Cramton
1997; Milgrom 2000].1

Combinatorial auctions (henceforth CAs) typically require the solution of one
or more difficult optimization problems. The computational complexity of these
problems threatens to render the traditional auction designs a mere theoretical
construct. One approach to meeting this threat is to replace the exact optimization
by an approximate one. This, however, gives rise to a new challenge: traditional
analysis of established CA mechanisms relies strongly on the fact that the goods are
allocated in an optimal manner, and the properties guaranteed by the mechanism
(such as truthful bidding, to be defined later), disappear if the allocation is anything
less than optimal. This is true in particular of the Generalized Vickrey Auction
(GVA), also defined later, which is widely taken to be the gold standard for CAs.
The primary focus of this article is to present a simple approximate optimization
method for CAs that possesses two attractive properties:

—the method performs a reasonably effective optimization, and
—there exists a novel payment scheme that, when coupled with the approximate

optimization method, makes for a combinatorial auction in which truth-telling
is a dominant strategy.

In order to show the latter property we identify several axioms which are sufficient
to ensure truth-telling for a restricted class of players, in any combinatorial auction;
these axioms are interesting in their own right, as they can be applied to auctions
other than the one discussed here. They were, in fact, shown to ensure truth-telling
for anyone parameteragents in Archer and Tardos [2001].
Note: Since we aim to make this article easily accessible to both computer scientists and game theorists,
we include some rather basic material.

2. A Brief Introduction to Combinatorial Auctions

In this section, we briefly cover the notions of complementarity and substitutabil-
ity, as motivating CAs; the two degrees of freedom in a sealed-bid CA, namely
allocation and payment policies; and why one needs to be careful when applying
the desiderata of efficiency and revenue maximization to CAs.

2.1. COMPLEMENTARITY AND SUBSTITUTABILITY. Throughout this article, we
shall consider single-side CAs with a single seller and multiple buyers. The reverse
situation with a single buyer and multiple sellers is symmetric; the two-sided case,
with multiple buyers and sellers, is more complex. Let us assume, then, that an
auctioneer is selling a number of different goods. In such a situation, a bidder may
be willing to pay more for the whole than the sum of what he is willing to pay for

1 Up until now the FCC auctions have not in fact been combinatorial, due in part to the complexity
problem discussed below. However, the FCC is currently actively considering a combinatorial auction.
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the parts: this is the case if the parts complement each other well, for example, a
left shoe and a right shoe. This phenomenon is calledcomplementarity. In other
cases, a bidder may be willing to pay for the whole only less than the sum of what
he is willing to pay for the parts, maybe only as much as one of the parts. This is
especially the case if the bidder has a limited budget or if the goods are similar,
or interchangeable, for example, two tickets to the same performance. This phe-
nomenon is calledsubstitutability. In general, complementarity and substitutability
can both play heavily in the same auction.

In the absence of complementarity and substitutability, that is, if every participant
values a set of goods at the sum of the values of its elements, one should organize
the multiple auction as a set of independent simple auctions, but, in the presence
of complementarity, organizing the multiple auction as a set or even a sequence
of simple auctions will lead to less than optimal results: for example, a participant
ending up with a left shoe and another one with the right shoe, or the left shoe
auctioned for almost nothing because bidders fear not to be able to get the right
shoe and the right shoe then auctioned for nothing to the buyer of the left shoe since
no one is interested in just a right shoe. The problem is particularly acute when the
complementarity and substitutability relations vary among the various bidders.

2.2. SPECIFYING A COMBINATORIAL AUCTION. Several auction designs have
been proposed to deal with complementarity and substitutability. For example,
the Simultaneous Ascending Auction was devised in connection with the FCC
Spectrum Auction mentioned above. In this article, we shall consider only what is
perhaps the most obvious approach, which is to allow combinatorial bidding. For
the history of combinatorial auctions, see Rothkopf [1983]. What does it take to
specify a CA? In general, any auction must specify three elements: the bidding rules
(i.e., what one is allowed to bid for and when), the market clearing rules (i.e., when
is it decided who bought what and who pays what), and the information disclosure
rules (i.e., what information about the bid state is disclosed to whom and when).

We consider only one-stage, sealed-bid CAs; in these, each bidder submits zero
or more bids, the auction clears, and the results are announced. The third element
of the specification is thus straightforward: no information is released about other
bidders’ bids prior to the close of the auction.

The first element of the specification is almost as straightforward: each bidder
may submit one or more bids, each of which mentions a subset of the goods and a
price. One has to be precise, however, about the semantics of the collection of bids
submitted by a single bidder; if I bid $5 fora and $7 forb, what does it mean about
my willingness to pay for{a, b}? If I bid $10 for {a, b} and $20 for{b, c}, what
does it mean about my willingness to pay for{a, b, c}? This is not a mysterious
issue, but one needs to be precise about it. We shall return to this issue later when
we discuss the notion of a bidder’stype.

The scheme above allows one to express complementarity. Bidding for $5 for
a, $7 for b and $15 for{a, b} clearly indicates complementarity. On the face of
it, though, substitutability cannot be expressed, since bidding $8 for{a, b}, $5
for a and $7 forb does not preclude, under the usual market clearing rules, one
being allocateda andb separately. However, a simple encoding trick presented
in Fujishima et al. [1999] allows the expression of substitutability, at least partially.
More elaborate proposals for bidding languages may be found in Sandholm [2000],
Nisan [2000], and Boutilier and Hoos [2001].
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Thus far, the designer of a combinatorial auction has no discretion. Only the
second element of specification, the clearing policy, provides choices. There are
two choices to be made here: which goods does every bidder receive, and how much
does every bidder pay? We address these below.

2.3. MAXIMIZING EFFICIENCY AND REVENUE. The standard yardsticks for auc-
tion design, which are sometimes at odds with one another, are guaranteeing effi-
ciency and maximizing (in our case, the seller’s) revenue. We shall be concentrating
primarily on efficiency in this article, but a very preliminary study of revenue is
found in Section 13. Efficiency means that the allocation (of goods and money)
resulting from the auction is Pareto optimal: no further trade among the buyers can
improve the situation of some trader without hurting any of them. This is typically
achieved by ensuring that the clearing rules maximize the sum of the values the
various bidders place on the actual allocation decided on by the auctioneer. On the
whole, one can expect that an efficient auction, after which the participants are glob-
ally satisfied, allows the seller to extract a higher revenue than an inefficient auction
after which the level of social satisfaction is lesser. Efficiency, therefore, which may
be a goal in itself, may also be a step in the direction of revenue maximization. In
fact, this correlation holds only in part, and auctions that are maximizing revenue
are not always efficient [Myerson 1981]. Nevertheless, we shall seek efficient, at
least approximately, auction mechanisms.

Note four problems here. We have already mentioned that bidders specify bids,
not their profile of preferences over bundles. This does not pose a real challenge,
so long as one is clear about the meaning of those bids. The second one is that
those profiles of preferences over bundles do not allow for a full specification of
preferences about the outcomes of the auction, that is, the resulting allocation. A
bidder cannot expressexternalities, for example, that he would prefer, if he does
not get a specific good, this good to be allocated to bidderX and not to bidder
Y. Third, we have an optimization problem on our hands; as it turns out, it is
an NP-hard optimization problem that cannot be even approximated in a feasible
way, in the worst case. This means that, for all practical purposes, there does not
exist a polynomial-time algorithm for computing the optimal allocation, or even
for computing an allocation that is guaranteed to be off from optimal by at most a
constant, any given constant. The fourth and deepest problem is that the optimization
is supposed to happen over the bidder’s true valuations, as opposed to merely their
bid amounts, but that information is not available to the auctioneer and the bidder
will reveal this information only if it is in his/her best interest.

An ingenious method, discussed in the next section, has been developed in game
theory to overcome the fourth problem. The problem is that not only does it not
address the second problem, it actually mildly exacerbates it by requiring that the
optimization be performed once for each bidder. The primary goal of this article is
to devise a method that promises good (albeit suboptimal) efficiency, while being
computationally feasible. In a nutshell, the goal is to simultaneously ensure eco-
nomic and computational efficiency.

3. Mechanism Design for CA

In this section, we consider the design of combinatorial auctions as a problem
of designing a game of incomplete information for which the weakly dominant
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strategies present agoodway of allocating the goods and paying for them. The
general setting is that of economic mechanism design: see Mas-Colell et al. [1995,
Chap. 23], for example, for an introduction to the field and Varian [1995] for a de-
scription of auctions in this framework. Contrary to the latter, we shall restrict our
description to combinatorial auctions in which no externalities can be expressed.
Informally, each bidder sends a message describing (truthfully or not) his prefer-
ences. The auctioneer, then, computes the resulting allocation of the goods and the
payments, based on the bidders’ messages but according to rules known in advance.
The mechanism is atruthful one if it is in the best interest of the bidders to send
messages that truthfully reveal their preferences.

Formally, we consider a setP of n bidders. The indicesi , j , 1≤ i, j ≤ n, will
range over the bidders. Bidders are selfish, but rational, and trying to maximize their
utility in the final outcome. A bidder knows his own utility function (i.e., histype),
but this information is private and neither the auctioneer nor the other players have
access to it. The final result of an auction consists of two elements: an allocation
of the goods and a vector of payments from the bidders to the auctioneer, both of
which are functions of the bidders’ declarations (i.e., bids). Formally, we have a
finite setG of k goods and an allocation is apartial function fromG to P, that is, a
functiona : G→ P′, with P′ = P ∪ {unallocated}, since we do not insist that all
goods be allocated. Notice that the allocations produced by the Generalized Vickrey
Auctions of Section 4 and by our Greedy algorithm of Section 7 are not always
total. The set of outcomes (i.e., allocations) isO = P′G, the set of partial functions
from G to P. Since we do not allow for externalities, the set2i of the possible types
for bidderi is R+2G

, whereR+ is the set of all nonnegative real numbers. Notice
that such a type allows for both complementarity and substitutability, but not for
externalities. Since the set2i does not depend oni , we shall write2. An element
of 2 assigns a real nonnegative valuation to every possible bundle. The set2 is
also the set of messages that bidderi may send. A bidder may send any element of
2, irrespective of his (true) type, that is, a bidder may lie. We shall typically uset
to denote a (true) type,d to denote a message,T or D to denote vectors ofn types
andP for a payment vector, that is, a vector ofn nonnegative numbers.

Since we assume the Independent Value Model and Quasi-Linear utilities, fairly
standard assumptions in the field, the utility, for a bidder of typet , of bundles⊆ G
and paymentx is:

u = t(s)− x. (1)

Definition 3.1. A (direct) mechanism for combinatorial auctionsconsists of

—an allocation algorithmf that picks, for each vectorD (D is a vector of declared
types), an allocationf (D),

—a payment schemep that determines, for each vectorD a payment vectorp(D):
pi (D) is paid by bidderi to the auctioneer.

Let us denote the bundle obtained byi as:

gi (D) = f (D)−1(i ). (2)

Notation. In general,gi depends on the allocation algorithmf , but when f is
clear from the context, we shall abuse the notation and treatgi as a direct function
of the bid vector,D. Equation (1) implies that if bidderi has (true) typet , his utility
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from the mechanism is:

ui = t(gi (D))− pi (D), (3)

whereD = 〈d1, . . . ,dn〉 is the vector of declarations.
The first term of this sum,t(gi (D)) is often called the valuation ofi : vi ( f (D), t).

The game-theoretic solution concept used throughout this article is that of a weakly
dominant strategy, that is, a strategy that is, as good as any other for a given player,
no matter what other players do. This is in contrast with the weaker and more
common notion of Nash equilibria. The particular property we would like to ensure
for our mechanism is that the dominant strategy for each player is to bid his true
valuation; in other words, no bidder can be better off by lying, no matter how
other bidders behave. A mechanism is truthful if no bidder can be better off by
lying, even if other bidders lie. This is a very strong requirement, making for a very
sturdy mechanism.

Definition 3.2. A mechanism〈 f, p〉 is truthful if and only if for everyi ∈ P,
t ∈ 2 and any vectorD of declarations, ifD′ is the vector obtained fromD by
replacing thei th coordinatedi by t , then:t(gi (D′))− pi (D′) ≥ t(gi (D))− pi (D).

In the definition above,t is the true type of bidderi andD is a vector of declared
types. The term,t(gi (D)), represents the true satisfactioni receives from the allo-
cation resulting from declarationsD andt(gi (D′)) represents his true satisfaction
from the allocation that would have been obtained hadi been truthful.

4. The Generalized Vickrey Auction

A very general method for designing truthful mechanisms has been devised by
Clarke [1971] and Groves [1973]. Applied to combinatorial auctions, it general-
izes the second price auctions of Vickrey [1961]. We shall now describe those
generalized Vickrey auctions, prove that the mechanism described is truthful and
then discuss the complexity issues that render those auctions infeasible whenk, the
number of goods, is large. Generalized Vickrey Auctions (GVAs) appear to be part
of the folklore of mechanism design. A description of a more general type may be
found in MacKie-Mason and Varian [1994] and Varian [1995]; we adopt a special
case of it, one which does not allow for externalities.

In a GVA, the allocation chosen maximizes the sum of the declared valuations
of the bidders, each bidder receives a monetary amount that equals the sum of the
declared valuations of all other bidders, and pays the auctioneer the sum of such
valuations that would have been obtained if he had not participated in the auction.
A way to describe such an auction, in whichi does not participate, is to consider
the auction in which bidderi declares a zero valuation for all possible bundles. A
bidder with zero valuation for all bundles has no influence on the outcome.

Formally, given a vectorD of declarations, the generalized Vickrey auction
defines the allocation and payment policies as follows (notice thata−1(i ) is the
bundle allocated toi by allocationa, and thatgi is defined in Eq. (2)):

f (D) = argmaxa∈O
n∑

i=1

di (a
−1(i )), (4)
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pj (D) = −
n∑

i=1,i 6= j

di (gi (D))+
n∑

i=1,i 6= j

di (gi (Z)), (5)

where Zi = Di for any i 6= j and Z j (s) = 0 for any bundles⊆ G. Since
dj (gj (Z)) = 0, we may as well have written:

pj (D) = −
n∑

i=1,i 6= j

di (gi (D))+
n∑

i=1

di (gi (Z)). (6)

A proof of the truthfulness of the Clarke–Groves–Vickrey mechanism may be
found, for example, in Mas-Colell et al. [1995, Proposition 23.C.4]. We include the
proof here only to stress how easy it is.

THEOREM 4.1. The generalized Vickrey auction is a truthful mechanism.

PROOF. Assumej ∈ P, t ∈ 2, D is a vector of declarations, andD′i = Di for
any i 6= j andD′j = t . By Eq. (4),

n∑
i=1

d′i (gi (D
′)) ≥

n∑
i=1

d′i (gi (D)).

But, for E = D, D′, we have:

d′i (gi (E)) = di (gi (E)), if i 6= j andd′j (gj (E)) = t(gj (E)).

Therefore,

t(gj (D
′))− pj (D

′)+
n∑

i=1,i 6= j

di (gi (Z)) ≥ t(gj (D))− pj (D)+
n∑

i=1,i 6= j

di (gi (Z))

andt(gj (D′))− pj (D′) ≥ t(gj (D))− pj (D).

Notice that the second term in the payment ofj does not depend onj ’s declaration
and is therefore irrelevant to his decision on what to declare. A feature of the GVA
is that no truthful bidder’s utility can be negative.

PROPOSITION 4.2. If j is truthful, his utility uj in the GVA is nonnegative.

PROOF. By Eq. (3), sincej is truthful, by Eq. (6), and finally by Eq. (4):

u j = dj (gj (D))+
n∑

i=1,i 6= j

di (gi (D))−
n∑

i=1

di (gi (Z))

=
n∑

i=1

di (gi (D))−
n∑

i=1

di (gi (Z)) ≥ 0.

Since bidders truthfully declare their type and the allocation maximizes the sum
of the declared utilities, in a GVA, the allocation maximizes the sum of the true
valuations of the bidders, that is, the social welfare. In a quasilinear setting, this is
equivalent to Pareto optimality. Therefore, a GVA is Pareto optimal. The mechanism
to be presented in Section 10 only approximately maximizes the sum of the true
valuations of the bidders, and is not Pareto optimal.
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As we discuss in the following sections, it is known that algorithmic complexity
considerations imply that Pareto optimality cannot be feasibly attained. Specifi-
cally, ensuring Pareto efficiency requires solving an intractable optimization prob-
lem. This is true even if we restrict the class of bidders severely, as we propose
in Section 5.

5. Single-Minded Bidders

As is customary, we shall consider that any algorithm whose running-time is poly-
nomial ink+n is feasible, but any algorithm whose running-time is not polynomial
in k+n is infeasible. The size of the setO of allocations is exponential ink, if there
are at least two bidders, and the set2 of possible types is doubly exponential in
k. Since, in a direct mechanism (we consider no others), the message that a bidder
sends describes one specific element (type) of2, a bidder needs an exponential
number of bits to describe his type: the length of the messages sent in any such
mechanism, and in a generalized Vickrey auction, is exponential ink, therefore
infeasible. The design of a feasible version of the GVA must begin, therefore, by
reducing the set of possible types to some set of singly exponential size. Most
implementations of auctions assume that the bidders express their preferences by a
small set ofbids. Other restrictions about the types of the bidders that facilitate their
description have been considered in Lehmann et al. [2001]. We shall start with a
most sweeping restriction. In Section 11, we shall consider relaxing this restriction
and an impossibility result will be presented in Section 12.

We shall assume that bidders are single-minded and care only about one specific
(bidder-dependent) set of goods. If they do not get this set they value the outcome
at the lowest possible value 0. In other words, our bidders are restricted to one
single bid.

Definition 5.1. Bidderi is single-mindedif and only if there is a sets⊂ G of
goods and a valuev ∈ R+ such that its typet can be described as:t(s′) = v if s⊆ s′
andt(s′) = 0 otherwise.

Note that single-minded bidders are notone parameteragents in the sense
of Archer and Tardos [2001], since they have the freedom of deciding which bundle
they bid for on top on the amount they are willing to pay. In Mu’alem and Nisan
[2002], truthfulness is shown to be attainable for allocation algorithms providing
better approximations if agents are assumed to be single-minded andone param-
eter. We shall denote by〈s, v〉 the type just described. Note that a single-minded
bidder enjoysfree disposal. We shall assume, in most of this article, that all bidders
are single-minded, that is, there are sets of goodssi and nonnegative real numbers
vi such that bidderi is of type〈si , vi 〉. We shall denote by6 the set of all single-
minded types. The size of the set6, contrary to the size of2, is singly exponential
in k. A string of polynomial size will be enough to code the declarations of the
bidders: it will describe a set of goods and a value. In this setting, we identify bids
and bidders. Note that in a simple auction, that is,k = 1, assuming there are no
externalities as we do, any agent is single-minded.

We shall design a feasible truthful mechanism for combinatorial auctions among
single-minded bidders. At least anecdotal evidence suggests that single-mindedness
is not an uncommon situation. Indeed, R. Wilson (private communication) reports
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that, in the GVA used for selling timber harvesting rights in New Zealand, the
bidders were almost single-minded: they were typically interested in all of the
locations in a specific geographical area. There are situations in which one may re-
alistically assume that bidders are single-minded. Consider, for example, an auction
of pollution rights, such as the ones considered in DeMartini et al. [1999]. Some
authority is selling rights to emit different pollutants during a fixed time-frame.
Bidders are typically chemical plants whose production process cannot be changed
at short notice and therefore bidders either buy all the rights corresponding to the
chemicals emitted by their plant or have to close the plant for the given time-frame.
The bidders are therefore single-minded and even fit the restrictions of Mu’alem
and Nisan [2002]. If the plant owner has the possibility of operating its plant at
less than full capacity, the situation is more complex. Other situations in which
bidders are single-minded would be: the auction of communication links in a tree,
or the auction of auto parts to buyers desiring a specific model. We are indebted
to Noam Nisan for those last examples. Consider, indeed, communication links
in a tree auctioned to bidders who want a path between two specific nodes. Since
there is only one path between any pair of nodes, the bidders are single-minded. Or
consider an auto manufacturer capable of assembling a number of different models
out of its stock of auto parts. The buyers have set their mind on the model they
want and are therefore single-minded: they need exactly all the parts included in
their model.

It might also seem that this restriction does away with the computational issue;
however, as we see in the next section, GVAs are infeasible even with the restriction
to single-minded bidders. In Section 11, we shall discuss the generalization of our
results to larger families of bidders.

6. Infeasibility of the GVA

Let us now assume that all bidders are single-minded, that is, the set of all possible
types is now6. It follows easily from Proposition 4.2 that, in a GVA, a single-
minded bidder of type〈s, v〉 never pays more thanv and pays nothing if he is not
allocated the whole sets.

In a GVA, the allocation is the one defined in Eq. (4). Computing this allocation
requires optimizing

∑n
i=1 di (a) over alla’s in the setO that is of exponential size.

One may suspect that this an infeasible task. Indeed, the problem of finding the
allocation of Eq. (4) has been shown to be NP-hard in Rothkopf et al. [1998]. We
remark that the restriction to single-minded bidders does nothing to alleviate the
problem. Not only is it infeasible to solve exactly the optimization problem, but
it turns out to be also infeasible to guarantee any nontrivial approximation to the
optimal allocation. This follows easily from a celebrated result of H˚astad [1999]
and was, independently, noticed by Sandholm to whom priority is due: final version
in Sandholm [2002].

THEOREM 6.1. Let a single-minded type di = 〈si , vi 〉, si ⊆ G, vi ∈ R+ be given
for each bidder i∈ P. Let |G| = k and|P| = n. The problem of finding an allo-
cation a that maximizes

∑n
i=1 di (a) is NP-hard in k+ n. Moreover, the existence

of a polynomial time algorithm guaranteed to find an allocation whose value is at
least k−1/2+ε times the value of the optimal solution would imply that NP=ZPP.
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A short note on complexity classes: in the above, NP is the class of sets for which
membership can be decided nondeterministically in polynomial time and ZPP is
the subclass of NP consisting of those sets for which there is some constantc and a
probabilistic Turing machineM that on inputx runs in expected timeO(|x|c) and
outputs 1 if and only ifx ∈ L. The question of whether NP= ZPP is a deep open
question in theoretical computer science, related with the famous P=NP question.
NP= ZPP is not known to imply P= NP, but does imply NP= RP= co-RP=
co-NP. P= NP obviously implies NP= ZPP. RP is the class of sets for which
membership can be decided in polynomial time by a randomizing algorithm. The
class co-RP is the class of sets whose complements are in RP: nonmembership can
be decided polynomially by a randomizing algorithm. Similarly for co-NP. ZPP is
the intersection of RP and co-RP. (end of short note).

PROOF. The problem at hand may be described as the weighted version of the
Set Packing problem of Karp [1972]. Karp shows that Set Packing is NP-hard by
reducing the Clique problem to it. Thek used in this reduction is of the order ofn2.
A direct reduction of Clique to our allocation problem is obtained in the following
way. Given a graphG, let the goods be the edges and the bids be the vertices. Each
vertex requests the edges it is adjacent to for a price of 1. An optimal allocation
is a maximal independent vertex set. H˚astad [1999] has shown that Clique cannot
be approximated within|V |1−ε unless NP= ZPP. The reduction mentioned above
shows our claim.

Notwithstanding Theorem 6.1, ifn ≤ logk, an optimal allocation may be found
in time linear ink and ifk ≤ logn, then dynamic programming provides an optimal
allocation in time quadratic inn, as shown in Rothkopf et al. [1998].

Let us now consider the significance of Theorem 6.1. Even if agents declare
their type truthfully, we cannot always attain an efficient allocation. This negative
result holds even if agents are single-minded. Global restrictions on the structure
of the set of bidders are considered in Rothkopf et al. [1998] and shown to allow
a polynomial search for the efficient allocation. They severely restrict the possible
types of the bidders to a subset of6, based on some inherent structure ofG. Those
restrictions are rarely met in practice.

If the number of goods is large, we may either find an algorithm that computes
the efficient allocation but may, in the worst cases, never terminate (for all practical
purposes) or settle for an algorithm that provides a subefficient allocation. Both
ideas have been proposed in Fujishima et al. [1999] and Sandholm [1999]. Recent
results on the impact of such an approximation on the quality of the mechanism,
that is, its truthfulness may be found in Nisan and Ronen [2000] for combinatorial
auctions and in Roughgarden and Tardos [2002] and Jain and Vazirani [2001] for
other combinatorial optimization problems. A pioneering study of the properties
of approximate mechanisms, but not for combinatorial auctions, may be found
in Nisan [1999] and Nisan and Ronen [1999]. The recent [Bartal et al. 2002]
provides a truthful approximate mechanism for a multi-unit combinatorial auction
but is not applicable to the single-unit combinatorial auctions considered here. In
Section 7, we shall provide a feasible approximation algorithm that appears to be
very effective in practice and, in Section 10, we shall describe a payment scheme,
different from the GVA’s, that guarantees truthfulness. The payment scheme is
carefully tailored to the specific approximation algorithm.
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7. The Greedy Allocation

Since an efficient solution seems out of reach, we shall look for an approximately
efficient solution. We shall propose a family of algorithms that provide such an
approximation. Each of those algorithms runs in almost linear time inn, the number
of single-minded bidders. One algorithm of the family guarantees an approximation
ratio ofk−1/2.

A single-minded bidder declaring〈s,a〉, with s⊆ G anda ∈ R+ will be said to
put out a bidb = 〈s,a〉. We shall uses(b) anda(b) to denote the components ofb
and calla(b) theamountof the bidb. As explained in Section 5, we identify bids
and bidders. Two bidsb = 〈s,a〉 andb′ = 〈s′,a′〉 conflict if s∩ s′ 6= ∅.

The algorithms we consider execute in two phases.

—In the first phase, the bids are sorted by some criterion. The algorithms of the
family are distinguished by the different criteria they use. Since there aren bids,
this phase takes time of the order ofn logn. We assume a criterion, that is, a norm
is defined and the bids are sorted in decreasing order following this norm. Since
we shall have, in Theorem 10.2, to compare the sorted lists of bids of slightly
different auctions, we also assume a consistent treatment of ties, that is, bids
with equal norms. Formally, we shall assume that no two different bids have the
same norm, that is, there are no ties.

—In the second phase, a greedy algorithm generates an allocation. LetL be the
list of sorted bids obtained in the first phase. The first bid ofL, sayb = 〈s,a〉 is
granted, that is, the sets will be allocated tob and then the algorithm examines
each bid ofL, in order, and grants it if it does not conflict with any of the bids
previously granted. If it does, it denies (i.e., does not grant) the bid. This phase
requires time linear inn.

The use of such a greedy scheme is very straightforward and speedy. We shall
now discuss its efficiency: how efficient is the allocation generated? The efficiency
of the allocation generated depends obviously both on the criterion used in the first
phase and on the types of the bidders, or on the distribution with which the bidders
are generated. It is clear that, to obtain allocations close to efficiency, one should use
a norm that pushes bids that have a good chance to be part of an efficient allocation
toward the beginning of the listL. The amount of a bid is a good criterion in this re-
spect: we want bids with higher amounts to have a larger norm than bids with lower
amounts, at least when the bids are for the same set of goods. Similarly, leaving the
amount of a bid unchanged but making its bundle a smaller set (inclusion-wise),
should also increase the norm. We shall require that changings to s′ with s′ ⊂ s
or changingv to v′ with v′ > v increase the norm of a bid. Let us call this property
bid-monotonicity. This is the only requirement we shall make. Many criteria
satisfy it.

In real-life situations, one can typically find a suitable natural norm related to the
economic parameters of the bundle that measures the a-priori attractiveness of the
bid (for the auctioneer). In the FCC auction, goods (licenses) are characterized by
the population they cover. The (inverse of the) sum of those populations is a good
indicator. In the abstract, if we know nothing concrete about the goods, our best bet
is to use the size of the set of goods mentioned in a bid. We shall look in particular
at the average-amount-per-good measure.
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Definition 7.1. The average amount per good of a bidb = 〈s,a〉 is a
|s| .

Sorting the listL by descending average amount per good is a very reason-
able idea. But many other possibilities may be considered. SortingL by descend-
ing amounts for example, or, more generally sortingL by a criterion of the form
a/|s|l for some numberl , l ≥ 0, possibly depending onk. All such criteria satisfy
bid-monotonicity.

How good is the greedy allocation in comparison with the optimal one? For
l = 1, the worst case may be analyzed without much difficulty. The ratio between
the total value of the optimal allocation and that of the allocation found by the greedy
algorithm cannot be larger thank, and this bound is tight. As usual in this sort of
situations, on the average, on realistic distributions of bids, the performance of the
greedy allocation scheme is much better than the lower bound above. We have been
able to perform a full analysis of the worst case performance of those norms for
differentl ’s and found out thatl = 1/2 is best: it guarantees an approximation ratio
of at least

√
k and, by Theorem 6.1, this is, up to a multiplicative constant, essentially,

the best approximation ratio one can hope for a polynomial-time algorithm. The√
k upper-bound improves on the previously best known result of Halld´orsson

[1999] by a factor of 2. Better results may now be found in Halld´orsson [2000]. The
following has since been generalized to multi-unit combinatorial auctions in Gonen
and Lehmann [2000].

THEOREM 7.2. The greedy allocation scheme with norm a/|s|1/2 approximates
the optimal allocation within a factor of

√
k.

PROOF. Assume the bids (i.e., bidders) are〈si ,ai 〉 for i = 1, . . . ,n. Let
wi = |si |. Our norm is:ri = ai /

√
wi . Let OP be the optimal solution, that is, the

set of bids contained in the optimal solution. The value of the optimal solution is
α =∑i∈OP ai . Let GRbe the solution obtained by the greedy allocation andβ its
value:β =∑i∈GRai . We want to show that:

α ≤ β
√

k. (7)

Notice, first, that we may, without loss of generality, assume that the setsOP and
GR have no bid in common. Indeed, if they have, one considers the problem in
which the common bids and all the units they request have been removed. The
greedy and optimal solutions of the new problem are similar to the old ones and the
inequality for the new smaller problem implies the same for the original problem.

Let us considerβ. By elementary algebraic considerations:

β =
∑
i∈GR

ai ≥
√∑

i∈GR

ai
2 =

√∑
i∈GR

ri
2 wi .

Considerα. By the Cauchy–Schwarz inequality:

α =
∑
i∈OP

ri
√

wi ≤
√∑

i∈OP

ri
2
√∑

i∈OP

wi .

The expression
∑

i∈OP wi represents the total number of goods allocated in the
optimal allocationOP and is therefore bounded from above byk, the number of
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goods available. We conclude that:

α ≤
√∑

i∈OP

ri
2
√

k.

To prove (7), it will be enough, then, to prove that:∑
i∈OP

ri
2 ≤

∑
i∈GR

ri
2 wi .

Consider the optimal solutionOP. By assumption, the bids ofOP did not enter
the greedy solutionGR. This means that, at the time any such bidi is considered
during the execution of the greedy algorithm, it cannot be entered in the partial
allocation already built. This implies that there is a goodl ∈ si that has already
been allocated in the partial greedy solution, that is, there is a bidj in GR, with
r j ≥ ri andl ∈ sj .

A number of different bids fromOP may, in this way, be associated with the
same bidj of GR, but at mostw j different bids ofOPmay be associated with bidj
of GR, since the sets of goods requested by two different bids ofOPhave an empty
intersection. IfOPj is the set of bids ofOP that are associated with bidj :∑

i∈OPj

r i
2 ≤ r j

2w j .

In other words, the greedy scheme does not guarantee any fixed ratio of approxi-
mation, but guarantees the best achievable ratio (assuming NP6=ZPP). Experiments
reported about in Gonen and Lehmann [2000] have confirmed that, on average for
a specific distribution, the greedy algorithm using the norm of Theorem 7.2 per-
forms extremely well, much better than the lower bound described in the theorem.
More experiments are necessary to study the average case performance of different
norms. In the sequel, all examples will use the average amount per good criterion
but it is not difficult to find similar examples for any criterion of the forma/|s|l .

Example7.3. Assume there are two goodsa and b and three bidders Red,
Green and Blue. Red bids 10 fora, Green bids 19 for the set{a, b} and Blue bids
8 for b. We sort the bids by decreasing average amount and obtain: Red’s bid fora
(average 10), Green’s bid for{a, b} (average 9.5) and Blue’s bid forb (average 8).
The greedy algorithm grants Red’s bid fora, denies Green’s bid for{a, b} since it
conflicts with Red’s and grants Blue’s bid forb. The allocation is not efficient. The
efficient allocation grants Green’s bid for{a, b} and denies both other bids.

Our goal is to devise truthful mechanisms for combinatorial auctions among
single-minded bidders. Given a suitable greedy allocation, can one find a payment
scheme that makes the pair a truthful mechanism?

8. Greedy Allocation and Clarke’s Payment Scheme Do Not Make a Truthful
Mechanism, Even for Single-Minded Bidders

In Section 10, a mechanism based on the greedy allocation will be built and shown
to be truthful if all bidders are single-minded. In this section, we show that the use of
Clarke’s payment scheme, used in the GVA and described in Eq. (5), in conjunction
with the greedy allocation doesnotmake for a truthful mechanism, even if bidders
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are single-minded. In other terms, if the greedy allocation and Clarke’s payment
scheme are used, a bidder may have an incentive to lie about his valuation. The
payment scheme used in the truthful mechanism of Section 10 is different from
Clarke’s. This is in stark contrast with the almost universal use of Clarke’s scheme
for devising mechanisms that are truthful in dominant strategies. Even in Nisan
and Ronen [1999] where approximate mechanisms are shown to be truthful for
certain situations, the payment schemes are Clarke’s scheme. In Nisan and Ronen
[2000] it is shown that for combinatorial auctions and other allocation problems any
truthful mechanism whose payments are the VCG payments must find the optimal
allocation. For us, a very simple example will suffice.

Example8.1. As in Example 7.3, there are two goodsa andb and three bidders
Red, Green, and Blue. Red bids 10 fora, Green bids 19 for the set{a, b} and Blue
bids 8 forb. The greedy algorithm grants Red’s and Blue’s bids and denies Green’s
bid, that is, f (D)(a) = Redand f (D)(b) = Blue. We shall now compute Red’s
payment. For this allocation, we have the following declared valuations:vBlue= 8
and vGreen= 0. If Red had bid zero, the greedy algorithm would have granted
Green’s bid and denied Blue’s bid. Therefore, the allocationf (Z) is defined by:
f (Z)(a) = f (Z)(b) = Green, wherevBlue= 0 andvGreen= 19. Clarke’s payment
scheme gives to Red: 8− 0 for Blue and 0− 19 for Green, that is, Red pays 11.
Red ends up paying more than the amount he declared. If Red has been truthful
and his valuation is indeed 10, his utility is−1. He would have been better off
lying, under-bidding at, say 9, or 0. In such a case, the greedy algorithm would
have granted Green’s bid and denied Blue’s and Red’s bids and the payment to Red
would have been zero, making his utility 0, better than−1.

Since this example is very simple and can be embedded in many more complex
situations, we may conclude that, typically, the use of a method that is only ap-
proximately efficient is incompatible with the use of a Clarke’s payment scheme.
The next sections present a positive result: there is a payment scheme (necessarily
different from Clarke’s) that makes truth-telling a dominant strategy.

9. A Sufficient Condition for a Truthful Mechanism for Single-Minded Bidders

We shall describe in this section a number of properties of allocation schemes
and of payment schemes for combinatorial auctions. Those properties seem nat-
ural properties to expect from a truthful mechanism and they are satisfied by the
GVA. We shall then show that, in any mechanism that satisfies those properties,
telling the truth is a dominant strategy. The literature concerned with strategic as-
pects of multi-item auctions has so far been interested in efficient mechanisms,
that is, mechanisms that allocate the goods in an optimal way (see Krishna and
Perry [1998] and Monderer and Tennenholtz [2000], for example). The conditions
presented here are remarkable in that they apply to nonefficient mechanisms too.
Those conditions have been shown in Archer and Tardos [2001] to apply to any
situation in which agents areone-parameter. Single-minded bidders are notone-
parameter. In Section 10, we shall describe a payment scheme and show that the
greedy allocation scheme, together with this new payment scheme, satisfy those
properties. The properties we are about to describe concern combinatorial auctions
among single-minded bidders. The question of generalizing those conditions to a
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more general setting is an intriguing one. Independently of this work, such a set-
ting has been proposed in Monderer et al. [2000]. Their setting is rich enough to
encompass combinatorial auctions among single-minded bidders, but not among
arbitrary bidders. Our mechanism does not satisfy their Axiom 2 and its payment
scheme is not of the Clarke’s type they propose. The properties below are sufficient
conditions for truthfulness and we do not claim they are necessary. Some of them
are obviously not necessary. Nevertheless many of those properties can be shown to
be necessary in the presence of others and for some others one can show that given
any truthful mechanism one can easily describe another similar truthful mechanism
that satisfies them. We leave to further work the exact characterization of truthful
mechanisms for combinatorial auctions among single-minded bidders.

The general structure of the properties of interest is that they consider a given
set of single-minded types and varyoneof those types. They restrict the changes
that can appear in the allocation or the payments as a result of such a change.
Let declarations be fixed, but arbitrary, for all bidders exceptj . Consider two
possible declarations forj : 〈s, v〉 and〈s′, v′〉. Given an allocation schemef and a
payment schemep, we shall consider the allocations and payments generated by
both declarations ofj . Let gi be the set of goods obtained by bidderi if j declares
〈s, v〉, andg′i the set he obtains ifj declares〈s′, v′〉. Similarly denote bypi andp′i
the payments ofi .

Our first property requires that the allocation, among single-minded bidders, be
exact, that is, a single-minded bidder either gets exactly the set of goods he desires,
nothing added, or he gets nothing. He never gets only part of what he requested. This
is a very natural property, when dealing with single-minded bidders: the valuation
of the bidder does not increase by giving him part of what he requested instead of
nothing or by giving him more than what he requested instead of just the bundle
he requested.

Exactness Eithergj = s or gj = ∅.
In an exact allocation, we shall say thatj ’s bid isgrantedin the first case, anddenied
in the second case. In such a scheme, the allocation may be viewed as a set of bids
(or bidders) that is conflict-free, that is, thes coordinates have pairwise empty
intersections. A GVA, as we defined it, does not in fact always satisfy Exactness.
If nobody is interested ina, an optimal allocation could still allocate it to one of
the bidders. An obvious modification of the GVAfor single-minded bidderscan
ensure Exactness.

Our next property, Monotonicity, also concerns only the allocation scheme. It
requires that, if j ’s bid is granted if he declares〈s, v〉, it is also granted if he
declares〈s′, v′〉 for anys′ ⊆ s, v′ ≥ v. In other words, proposing more money for
fewer goods cannot cause a bidder to lose his bid. It follows that, similarly, offering
less money for more goods cannot cause a lost bid to win. Formally:

Monotonicity s⊆ gj , s′ ⊆ s, v′ ≥ v ⇒ s′ ⊆ g′j .

The GVA’s allocation scheme picks the efficient allocation, that is, the allocation
that maximizes the sum of the amounts of a conflict-free subset of bids. If a bid
is included in the optimal allocation and its amount increases then the same allo-
cation’s total amount increases by the same amount and therefore stays optimal.
Similarly, if the amount stays unchanged but the set of goods requested becomes
smaller (inclusion-wise), the previous allocation, after the obvious change, is still
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conflict-free and its total amount has not changed. Any allocation not containing
the new bid was a suitable allocation before the change and therefore is not bet-
ter. Similarly, if a bid is denied and its amount decreases, the optimal allocation’s
value stays fixed but the value of any allocation including the bid decreases, and
similarly when varying the sets. We conclude that, assuming that there is a unique
optimal allocation, the GVA’s allocation scheme satisfies Monotonicity. In general,
when many allocations could be tied for optimality, a GVA scheme may not be
monotonic, but one may may modify the GVA scheme to ensure Monotonicity.

We must immediately consider the consequences of Monotonicity, since we shall
need them in stating the upcoming Critical property.

LEMMA 9.1. In a mechanism that satisfies Exactness and Monotonicity, given
a bidder j , a set s of goods and declarations for all other bidders, there exists a
critical value vc such that

∀v, v < vc ⇒ gj = ∅,
∀v, v > vc ⇒ gj = s,

We allowvc to be infinite if f (As,v)−1( j ) = ∅ for everyv. Note that we do not
know whetherj ’s bid is granted or not in casev = vc.

PROOF. By Monotonicity, the set ofv’s for which gj = ∅ is empty (in which
case takevc = 0), a semi-open set of the form [0, vc[ or a closed set of the form
[0, vc] or equal toR+.

Our third property deals with a satisfied bidder: a satisfied bidder pays exactly
the critical value of Lemma 9.1, that is, the lowest value he could have declared
and still be allocated the goods he desires.

Critical s⊆ gj ⇒ pj = vc

Notice that Critical says, first, that the payment for a bid that is granted does not
depend on the amount of the bid, it depends only on the other bids. Then it says
that it is exactly equal to the critical value below which the bid would have lost.

Critical is a necessary property for a truthful mechanism that satisfies Exactness,
Monotonicity and the Participation property below. If the paymentp is smaller than
vc, any bidder with real value betweenp andvc loses if he declares truthfully but
wins and pays less than his true value if he declares just abovevc. If the payment
p is larger thanvc, any bidder with real value betweenvc and p wins but gets
negative utility if he declares truthfully and would be better off declaring a value
belowvc and losing. Since a GVA is truthful and satisfies Exactness, Monotonicity
and Participation, it also satisfies Critical.

Our last property concerns the payment scheme. Together with Critical, it implies
that the utility of no truthful bidder is negative. It concerns unsatisfied bidders, bids
that are denied. We require that an unsatisfied bidder pay zero. The utility of an
unsatisfied bidder is then zero. This is simply tuning the utility scales of the different
bidders, or, ensuring that bidders may not lose by participating in the auction.

Participation s 6⊆ gj ⇒ pj = 0

A GVA satisfies Participation. In fact, the second term of Eq. (5) is precisely tuned
to satisfy Participation.
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Any mechanism that satisfies the conditions above is truthful. A number of
preliminary lemmas are needed.

LEMMA 9.2. In a mechanism that satisfies Exactness and Participation, a
bidder whose bid is denied has utility zero.

PROOF. By Exactness, the bidder gets nothing and his valuation is zero. By
Participation, his payment is zero.

LEMMA 9.3. In a mechanism that satisfies Exactness, Monotonicity, Participa-
tion and Critical a truthful bidder’s utility is nonnegative.

PROOF. If j ’s bid is denied, we conclude by Lemma 9.2. Assumej ’s bid is
granted and his type is〈s, v〉. Since he is truthful, his declaration isdj = 〈s, v〉. We
conclude thatj is allocateds and his valuation isv. By Lemma 9.1, sincej ’s bid
is granted,v ≥ vc. By Critical, j ’s payment isvc, and his utility isv − vc ≥ 0.

The next lemma shows that a bidder cannot benefit from lying just about his
value (he truthfully declares the set of goods he is interested in).

LEMMA 9.4. In a mechanism that satisfies Exactness, Monotonicity, Participa-
tion and Critical, a bidder j of type〈s, v〉 is never better off declaring〈s, v′〉 for
some v′ 6= v than by being truthful.

PROOF. Compare the casej bids, truthfully,〈s, v〉 and the case he bids〈s, v′〉.
Let gj be the bundle he gets in the first case andg′j the bundle he gets in the second
case. If j ’s bid is denied in the second case (i.e., ifg′j 6= s), then, by Lemma 9.2,
his utility is zero in the second case and, by Lemma 9.3, his utility in the first case
is nonnegative. The claim holds.

Assume therefore thatg′j = s. If both bids are granted,j has the same valuation
(v) and pays the same payment,vc (by Critical). If g′j = s but gj = ∅, it must be
the case thatv ≤ vc ≤ v′. Being truthful givesj , by Lemma 9.2, zero utility. Lying
gives him utilityv − vc ≤ 0.

LEMMA 9.5. In a mechanism that satisfies Exactness, Monotonicity and Crit-
ical, a bidder j declaring type〈s, v〉 whose bid is granted, that is, gj = s, pays a
price pj that is at least the price p′j that he would have paid had he declared his
type as〈s′, v〉 for any s′ ⊆ s.

PROOF. By Monotonicity, the bid〈s′, v〉 would have been granted and by Crit-
ical, the pricep′j paid for such a bid satisfies: for anyx < p′j the bid〈s′, x〉 would
not have been granted. By Monotonicity, for any suchx the bid〈s, x〉 would not
have been granted. By Critical, for anyx such thatx > pj , the bid〈s, x〉 would
have been granted. We conclude thatp′j ≤ pj .

Finally, we may prove a central result.

THEOREM 9.6. If a mechanism satisfies Exactness, Monotonicity, Participation
and Critical, then it is a truthful mechanism.

PROOF. Supposej ’s type is〈s, v〉. Could j have any interest in declaring his
type as〈s′, v′〉? By Lemma 9.3, the only case we have to consider is when declaring
〈s′, v′〉 j gets a positive utility, and by Lemma 9.2 this means thatj ’s bid is granted.
Assume, therefore thatg′j = s′. If s 6⊆ s′, the valuation of j is zero. Since, by
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Critical, his payment is non-negative, his utility cannot be positive. Assume then
s⊆ s′. Since j ’s valuation fors′ is the same as fors, Lemma 9.5 implies that,
instead of declaring〈s′, v′〉, j would not have been worse off by declaring〈s, v′〉.
Lemma 9.4 implies that declaring〈s, v′〉 cannot be better than being truthful.

10. A Truthful Mechanism with Greedy Allocation

We shall now describe the payment mechanism that we propose to be used in
conjunction with the greedy allocation of Section 7. The description of the payments
is tightly linked with that of the greedy algorithm. The computation of the payment
is performed in parallel with the execution of the greedy algorithm and takes time
linear in the number of bidders for each payment. On the whole, computing the
allocation and the payments takes time at most quadratic in the number of bids.

We assume that the criterion used is average amount per good, the adaptation
to most other suitable greedy allocations is obvious. Informally, a bidder pays, per
good, the average price proposed by the first bid in the listL that is denied because
of this bid. Consider a bidj in L. Letc( j ) be the average amount per good ofj . We
shall denote byn( j ) the first bid following j (bids are sorted in decreasing order,
that is,c( j ) ≥ c(n( j ))) that has been denied but would have been granted were it
not for the presence ofj . Assume that such a bid exists. Notice that such a bid
necessarily conflicts withj , and therefore:

n( j )= min{i | j < i, s( j )∩ s(i ) 6= ∅, ∀l , l < i, l 6= j, l granted⇒ s(l )∩ s(i )=∅}.

Definition10.1Greedy Payment Schéme. Let L be the sorted list obtained in
the first phase.

— j pays zero if his bid is denied or if there is no bidn( j ),
—if there is ann( j ) and j ’s bid 〈s, v〉 is granted he pays|s| × c(n( j )).

We may now state the main result of this article.

THEOREM 10.2. The mechanism composed of the greedy allocation and pay-
ment schemes is truthful for single-minded bidders.

PROOF. We shall prove that greedy mechanism satisfies Exactness, Monotonic-
ity, Participation and Critical and use Theorem 9.6. The description of the greedy
allocation scheme makes it clear that every bid is either granted or denied. The
greedy allocation satisfies Exactness. For Monotonicity, assume thats⊆ s′ and
that v ≥ v′ and letc be the norm of〈s, v〉 and c′ the norm of〈s′, v′〉. By our
assumption concerning norms we havec ≥ c′. If we compare the listL andL ′ ob-
tained, respectively, we see that, since there are no ties by assumption, they differ
only in that j ’s bid may have been moved backwards by the change from〈s, v〉 to
〈s′, v′〉. The greedy allocation algorithm performs, that is, grants or denies bids, in
exactly the same way onL andL ′ until it gets to j ’s bid in L. Assumej ’s bid is
denied inL: there is some bid that conflict with it that has been granted already.
The same bid also conflicts withj ’s bid in L ′ sinces⊆ s′ and this bid will also be
denied. Similarly, if j ’s bid in L ′ is granted, no bid granted before conflicts with it
and therefore no bid granted beforej ’s in L conflicts with it either andj ’s bid is also
granted inL. We have shown that the greedy allocation satisfies Monotonicity. It is
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clear from the first part of Definition 10.1 that it satisfies Participation. For Critical,
notice that the second part of Definition 10.1 defines the payment for a bid granted
at exactly the minimal declared value that would have allowed it to be granted,vc.
Any declared value above|s| × c(n( j )) leavesj beforen( j ). If there was a bidi ,
j < i < n( j ) that would prevent the granting ofj displaced in such a way,i would
have to be granted and conflict withj . It is therefore a bid denied in the original
allocation, that would have been granted were it not forj , contradicting the fact
that n( j ) is the first such bid. Any declared value below|s| × c(n( j )) guarantees
the denial ofj becausen( j ) is granted.

Let us now describe this payment scheme on two examples.

Example10.3. Consider the bidders of Example 8.1. The goods area andb
and the bidders are Red, Green, and Blue. Red bids 10 fora, Green bids 19 for
the set{a, b} and Blue bids 8 forb. We have seen that Red’s and Blue’s bids are
granted, Green’s bid is denied. This is not the efficient solution. If Red had not
participated, Green’s bid would have been the one with highest average price and
would have been granted. Red pays Green’s average price. Red pays 9.5. Green
pays 0, since his bid is denied. Blue pays 0 since he is not keeping any other bid
from being granted. Note that a GVA would have allocated both goods to Green
and made him pay 18.

Example10.4. Assume, as usual, two goods and three bidders. Red bids 20 for
a, Green bids 15 for forb and Blue bids 20 for the set{a, b}. Red’s and Green’s bids
are granted. Blue’s bid is denied. If Red had not participated, Blue’s bid would still
have been denied, because of Green’s. Therefore, Red pays zero. Similarly, Green
pays zero. Notice that, in this case, the allocation is the efficient allocation, as in a
GVA, but the GVA’s payments are different: Red pays 5 and Green pays 0.

11. Complex Bidders

Our assumption that bidders are single minded seems very restrictive; is there a
way to extend our results to more complex players? Why not view a player as a
collection of single-minded agents, or, equivalently, view the type of a player as
a collection of bids? In such a setting, the game played becomes much richer in
strategies and players may be better-off lying on some of their bids to obtain an
advantage on others. Our discussion will, by necessity, be sketchy.

In Section 5, we presented single-minded bidders as an answer to the combina-
torial explosion in bidders’ types triggered by a growth in the number of goods,k.
The set of types is doubly exponential ink, but the set of single-minded types is only
exponential ink. In trying to overcome the limitation to single-minded bidders, one
could consider any super-set of the single-minded types that grows only exponen-
tially with k. A very natural idea is to consider players that send off single-minded
agent bidders to do their work. The agents play rationally, but individually, and
bring the goods and the payments due to the player. In the final analysis, a player
gets all the goods obtained by each of his agents and pays all the payments imposed
on each of his agents. A player’s strategy is then asmall(i.e., polynomial ink) set
of single-minded agents (i.e., bids).

Our proposal is a formalization of this idea and enables us to raise fundamental
game-theoretic questions about this setting. This setting is by no means a trivial
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restriction. Notice, for example, that, even though a GVA may be described in
terms of bids placed by the players, a player placing one bid for each subset of the
goods, the allocation and payment schemes require knowledge of the identity of
the player who placed the bid: a player can have at most one of his bids granted
and his payment is not a function only of the bids but also of their owners.

One may ask the following questions: given a typet , not necessarily single-
minded, what is a truthful description oft as a small set of single-minded bidders?
For which types is there such a description? Given a mechanism, what is the decla-
ration, that is, small set of single-minded bidders, that a player of typet should use
to get the most out of the mechanism? Is there a mechanism for which a truthful
declaration is a dominant strategy? The sequel will show that, if the mechanism
uses any reasonable variation on the greedy allocation, the answer is negative for
any reasonable definition of a truthful description.

First, let us remark that one positive result has been obtained. Theorem 10.2 shows
that a single-minded bidder has, in our mechanism, a weakly dominant strategy that
is to tell the truth,even if the other players are complex players represented by a
collection of single-minded agents. But what is the optimal strategy of a complex
player, that is, which agents should he send off?

It is not clear what are the mechanisms we should consider in this setting. One
could assume a blind mechanism, in which the auctioneer has to allocate the goods
between the single-minded agents without knowing which agents are owned by the
same player. But one could also provide the auctioneer with this information. This
would allow him, for example, to avoid making the payment for a bid depend on
another bid from the same player, which is certainly a step toward truthfulness.
One could also require the auctioneer does not grant more than one bid from
each bidder, but the literature does not seem to favor this policy. As noticed in
Section 2.1, a player may naturally express complementarity by the bids he puts
out, but expressing substitutability is more difficult. To this effect, one could allow
the players to declare not only a set of bids but also an incompatibility list describing
which of his bids may not be granted simultaneously. This is the policy proposed
in Fujishima et al. [1999] under the namedummy goods.

A further discussion of these issues can be left for a future article since our result,
concerning the greedy allocation’s properties, is negative and based on a simple
situation that can be embedded in any of the proposals above. In Section 12, a
strong result will be presented but it is necessarily formal, and general. Here, we
shall present a concrete example.

Example11.1. The mechanism we consider is the greedy mechanism. Red is
a single-minded bidder and his type is〈{a}, 12〉, that is, he bids 12 fora alone.
Green is a complex bidder. His typetG is described by:tG({a}) = 10,tG({b}) = 10
andtG({a, b}) = 30. Notice that Green exhibits complementarity: he values the set
{a, b} at more than the sum of his values fora andb. Whatever stance one takes
about the way a set of single-minded bidders can, in general, represent a type, in
this case, the set of three bids:〈{a}, 10〉, 〈{b}, 10〉 and 〈{a, b}, 30〉 is a truthful
representation of Green’s type. Even if the rules of the auction allow the auctioneer
to grant Green both his bid fora and his bid forb, Green cannot complain, in such a
case, about his bid for the set{a, b} being denied since he will, under any reasonable
payment scheme, pay less fora andb separately than for his bid for the whole set.
Suppose Green bids truthfully. The greedy mechanism grants Green’s bid for the
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set{a, b} and denies all other bids. Green pays 24 (in a GVA, he would pay only
12), and therefore his utility is 6. To eliminate all doubts about the legitimacy of
the payment scheme here, notice that Green’s payment is determined by Red’s bid,
not by Green’s other bids.

But consider what would have happened if Green had under-bid and declared:
〈{a}, 10〉, 〈{b}, 10〉 and〈{a, b}, 23〉. The greedy mechanism now allocatesa to Red
(he pays 11.5) andb to Green. Green pays zero. His utility is 10. Green is better off
lying. Notice that, by lying on his valuation for the set{a, b}, Green loses (6) on
this bid: considered in isolation, this bid had no incentive to lie, but this lie favors
the bid forb which happens to be Green’s also.

Example 11.1 above exhibits a situation in which a gang of single-minded players
may be globally better off under-bidding and losing utility on one of its bids, in
order to have another of the gang’s bid granted and making up for the loss, and
more. A similar situation can arise in which a gang may be better off over-bidding
on a bidb1 to ensure that it is granted, even at a loss, in order to keep another bidder
from getting goods included in another bid of the gang.

The greedy mechanism is not truthful for complex players. In the next section,
we shall show that the fault does not lie with the payment scheme: no payment
scheme can make the greedy allocation algorithm truthful. The problem lies with
the allocation scheme. Nevertheless, the greedy mechanism has some truthfulness
in it. If a player’s bidding is decided in a myopic way by his single-minded agents
they will bid truthfully. It is only global considerations that can induce a society
of agents to require its agents not be truthful. We think we have here some kind
of myopic, limited or bounded truthfulness that may be a very useful ingredient
in certain types of mechanisms. Situations in which the players have too little
information and too few resources to be able to analyze intelligently the global
strategic situation may induce them to delegate their strategy to myopic agents.
In such situations, one may be content with a mechanism that exhibit this kind of
limited truthfulness.

12. No Payment Scheme Makes the Greedy Allocation a Truthful
Mechanism for Complex Bidders

In Section 11, we showed that the greedy scheme, that is, greedy allocation+
greedy payment, cannot be extended to a truthful mechanism for complex players.
We shall now show that no payment scheme can complement the greedy allocation.

If a bidder is not single-minded, but double-minded (i.e., interested in two dif-
ferent sets of two goods), there may be no payment scheme that, combined with the
greedy allocation algorithm, will make for a truthful mechanism. We shall consider
a very simple situation: two goods, two bidders, one of them single-minded, the
other one double-minded. The search for a family of bidders that is significantly
larger than the single-minded ones and a suitable payment scheme is open, but it
starts with a negative result. Notice the result does not only show that our pay-
ment scheme is unsuitable, it shows that no payment scheme exists (to be used in
conjunction with the greedy allocation scheme).

Assume there are two goodsa andb and two bidders Green and Red. Red is
single-minded and his type is〈{a}, 10〉. Red truthfully declares his type. Green is
interested in bothb and the set{a, b}. His valuation is 0 for any allocation in which
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he does not getb. It is vb for any allocation in which he getsb but nota, and it
is vab if he gets botha andb, vab > vb. Green’s declaration is 0 for all allocations
that do not give himb, gb for all allocations that give himb but nota andgab for
the allocation in which he gets botha andb. Notice that four parameters describe
the auction:gab, gb, vab andvb. Assume, furthermore, that 0≤ gb < 10. We reason
by contradiction and assume there is a payment scheme that makes truth-telling a
dominant strategy for Green. Let us consider two cases.

First, assume thatgab > 20. In this case, the greedy algorithm will allocate both
goods to Green. The payment mechanism will make Green paypab. Notice that this
paymentpab cannot depend on:

—gab (as long asgab > 20): otherwise, Green would have an interest in declaring
thegab most favorable to him, irrespective of hisvab,

—gb: otherwise, similarly, Green would have an interest in declaring thegb most
favorable to him irrespective of hisvb,

—vab: since payments cannot depend on private values,
—vb: similarly.

Therefore,pab is simply a number. The utility of Green, in this first case, is:
vab− pab.

Consider, now, a second case:gab < 20. In this case, the greedy algorithm al-
locatesa to Red andb to Green. Let us denote bypb the payment of Green. For
the same reasons as above,pb cannot be a function of any of the parameters. The
utility of Green, in this second case, is:vb − pb.

Assume that, in fact, Green is bidding his true valuation onb (i.e., gb = vb).
Since truth-telling is a dominant strategy for Green, it must be the case that,

—if vab > 20, Green gets from case 1 not less than from case 2 (i.e.,vab− pab ≥
vb − pb = gb − pb);

—if vab < 20, Green gets from case 2 not less than from case 1 (i.e.,gb − pb =
vb − pb ≥ vab− pab).

By considering the casevab is just greater than 20 andgb is just less than 10,
the first inequality gives us 20− pab ≥ 10− pb (i.e., pab− pb ≤ 10). By consid-
ering the casevab is just less than 20 andgb is 0, the second inequality gives us
−pb ≥ 20− pab (i.e., pab− pb ≥ 20). A contradiction.

Let us try, now, to discuss the reasons for the negative result just presented.
Why is there a scheme for single-minded bidders and no scheme for more complex
bidders? The impossibility to devise a truth-conducing payment scheme around the
greedy allocation stems from the richness of the strategic possibilities offered to a
complex bidder. Let us explain why the obvious extension of our payment scheme
does not work. Bidderi , in order to get gooda against the competition of another
bidder interested in{a, b, c}, may have an interest in over-bidding oncand get it at a
loss, just to keep his opponent from getting the whole set. Similarly,i underbidding
ona and losing it, may give{a, b} to another bidder, which in turn may keep a third
bidder from getting{b, c} and causei to get much coveted{c}.

The discussion just above is, in fact, very similar to Vickrey’s discussion in
Section 5 of Vickrey [1961] of the reasons why his scheme for an auction of
identical objects is truth-revealing only if one assumes buyers of a very simple
type: interested in at most one item.
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13. Revenue Considerations

We have described a feasible mechanism for combinatorial auctions that is truthful
when bidders are single-minded. Should a seller use it for selling goods? It is very
difficult to say anything general about the revenue generated by this mechanism. We
shall compare the revenue generated by our mechanism to the revenue generated by
a GVA. Since a GVA allocates the goods in an efficient way but our mechanism does
not, one can fear that the revenue generated by our mechanism will be significantly
smaller in all those cases in which the allocation is not efficient. This does not seem
to be the case. There are cases in which our algorithm generates a higher revenue
than a GVA and there are cases in which a GVA is preferable. The comparison does
not seem to be tightly correlated to the relative efficiency of the allocations. We
shall present four simple situations. All examples assume single-minded bidders
Green, Red, Black and sometimes Blue. The first two examples are typical of purely
combinatorial situations.

Example13.1. Assume there are four goods,a, b, c andd. Green is interested
in {a, b}, Red in{c, d} and Black in{a, c}. All bids are for the same amount: 1.

Let us first consider a GVA. A GVA allocates the efficient way: Green gets
{a, b} and Red gets{c, d}. Green and Red pay nothing: if they had not partici-
pated only one bid could have been granted. The revenue generated by a GVA
is zero.

Because of the tie our greedy scheme may end in one of three possible situa-
tions, up to symmetry between Green and Red. First scenario: the order is Green,
Red, Black. The allocation is efficient and nobody pays anything, as for a GVA.
Second scenario: the order is Green, Black, Red. The allocation is efficient, but this
times Green pays 1, Red pays nothing. Third scenario: the order is Black, Green,
Red. The allocation isnot efficient: Black gets{a, c} andb andd are unallocated.
Black pays 1.

In this case, our scheme generates, on average, 2/3, whereas a GVA generates 0.

Example13.2. Four goods,a, b, c andd. Green is interested in{a, b}, Red in
{c, d}, Black in{a, c} and Blue in{b, d}. All bids are for the same amount: 1.

A GVA allocates the efficient way: either to Green and Red or to Black and Blue.
In any case, each successful bidder pays 1: the revenue is 2 and the full surplus
is extracted.

Because of the tie our greedy scheme may end in one of three possible situations,
up to symmetry. First scenario: the order is Green, Red, Black, Blue. The allocation
is efficient (to Green and Red) and nobody pays anything. Second scenario: the
order is Green, Black, Red, Blue. The allocation is efficient (to Green and Red),
but this times Green pays 1, Blue pays nothing. Third scenario: the order is Green,
Black, Blue, Red. The allocation is efficient (to Green and Red). Green pays 1 and
Red pays nothing.

In this case, our scheme generates, on average, 2/3, whereas a GVA generates 2.

Our next example is typical of strong complementarity.

Example13.3. Red bids 20 for the set{a, b}, Green bids 9 fora and Black bids
1 for b. Both our greedy algorithm and a GVA allocatea andb to Red. With our
scheme, Red pays 18, with a GVA, he pays 10.
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Example13.4. Green bids 20 fora, Red bids 37 for the set{a, b} and Black
bids 18 forb. Both our greedy algorithm and the efficient allocation of the GVA
givea to Green andb to Black. With us, Green pays 18.5 and Black pays nothing.
With a GVA, Green pays 19 and Black pays 17. Our mechanism generates 18.5 to
the GVA’s 36.

Example13.5. Green bids 10 foraand Red bids 19 for the set{a, b}. Our greedy
scheme allocatesa to Green and leavesb unallocated. The efficient allocation of
the GVA gives botha andb to Red. In our scheme Green pays 9.5. In a GVA, Red
pays 10.

More work is needed to assess the revenue generated by the mechanism proposed.

14. Conclusion and Future Work

To overcome the complexity of computing, the efficient allocation in combinatorial
auctions, we propose to use a greedy approximation together with a payment scheme
tailored to fit it. The combination provides a truthful mechanism tailored to a specific
nonoptimal approximation scheme that is not a member of the VCG family. This
mechanism admits dominant strategies and is therefore very sturdy. Between the
presentation of a first version of this work [Lehmann et al. 1999a, 1999b] and the
publication of this final version, a number of both impossibility and possibility
results [Nisan and Ronen 2000; Archer and Tardos 2001; Lehmann et al. 2001;
Bartal et al. 2002; Mu’alem and Nisan 2002] on the topic of feasible approximations
and truthful mechanisms for different sorts of combinatorial auctions.

A number of additions, modifications or extensions should be considered.
Reserve prices are a necessary feature of real-life auctions. Adding reserve prices to
our scheme poses no problem: reserve prices are bids put out by the auctioneer and
truthfulness is still a dominant strategy for the buyers. The optimal strategy of the
seller, that is, the optimal reserve price, requires a different study. In a combinatorial
auction, the reserve prices can, very naturally, express the complementarity of the
seller. In particular, a seller who does not want to sell too large sets of goods to the
same buyer, to avoid monopolies for example, will put high reserve prices for large
sets of goods.

Before one can apply the ideas presented here to auctions of identical items, and
to such double auctions, those ideas need to be adapted to this setting. This is the
topic of further research.

A combinatorial auction that features a number of different types of goods, a
number of items of each type of goods being for sale, represent the ultimate combi-
natorial auction. The ideas presented in this paper may provide a computationally
feasible solution for such auctions.

The revenue generated by the mechanism proposed should be studied in depth.
The approximation scheme presented in this paper: greedy, is quite rudimentary.

Even though it attains the theoretically optimal (worst-case) ratio, it should, prob-
ably, in practice, be either iterated with different criteria or be included in some
more complex scheme with some sort of backtracking. The main avenue for further
research is probably the consideration such better approximation schemes and the
design of suitable payment schemes. The properties described in Section 9 are a
clear guide on how to do that. Note, in particular, that Critical leaves no freedom
in the design of the payment scheme.
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The properties of Section 9 are sufficient for truthfulness, among single-minded
bidders, but some of them also seem to be necessary, at least in the presence of
others. A full characterization of truthful schemes for combinatorial auctions should
be attempted.
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