Boosting as a Metaphor for Algorithm Design

Kevin Leyton-Brown, Eugene Nudelman,
Galen Andrew, Jim McFadden, and Yoav Shoham

{kevinlb;eugnud;galand;jmcf;shoha@cs.stanford.edu

Stanford University, Stanford CA 94305

Abstract. Hard computational problems are often solvable by multiple algo-
rithms that each perform well on different problem instances. Werithestech-
niques for building an algorithm portfolio that can outperform its constitaént
gorithms, just as the aggregate classifiers learned by boosting outpénoclas-
sifiers of which they are composed. We also provide a method for gimgtest
distributions to focus future algorithm design work on problems that ac:foa

an existing portfolio. We demonstrate the effectiveness of our techsigué¢he
combinatorial auction winner determination problem, showing that oufgior
outperforms the state-of-the-art algorithm by a factor of three.

1 Introduction

Although some algorithms are better than others on avethges is rarely a best al-
gorithm for a given problem. Instead, it is often the case different algorithms per-
form well on different problem instances. Not surprisinglyis phenomenon is most
pronounced among algorithms for solvingP-Hard problems, because runtimes for
these algorithms are often highly variable from instancimstance. When algorithms
exhibit high runtime variance, one is faced with the problgindeciding which algo-
rithm to use; in 1976 Rice dubbed this the “algorithm setacroblem” [13]. In the
nearly three decades that have followed, the issue of #tgorselection has failed to
receive widespread study, though of course some excellerit does exist. By far,
the most common approach to algorithm selection has beer&sume different algo-
rithms’ performance on a given problem distribution, arehtto use only the algorithm
having the lowest average runtime. This approach, to whiehlefer as “winner-take-
all’, has driven recent advances in algorithm design andegafent, but has resulted
in the neglect of many algorithms that, while uncompetitireaverage, offer excel-
lent performance on particular problem instances. Ourideration of the algorithm
selection literature, and our dissatisfaction with theneintake-all approach, has led
us to ask the following two questions. First, what generehméques can we use to
perform per-instance (rather than per-distribution) dthm selection? Second, once
we have rejected the notion of winner-take-all algorithraleation, how ought novel
algorithms to be evaluated? Taking the idea of boosting fneachine learning as our
guiding metaphor, we strive to answer both questions.

! This work has previously been published as a two-page extendedati8jra

1.1 The Boosting Metaphor

Boosting is a machine learning paradigm due to Schapiregidjwidely studied since.
Although this paper does not make use of any technical sefan the boosting lit-
erature, it takes its inspiration from the boosting phifdsp Stated simply, boosting is
based on two insights:

1. Poor classifiers can be combined to form an accurate eserhbn the classifiers’
areas of effectiveness are sufficiently uncorrelated.

2. New classifiers should be trained on problems on whichdhent aggregate clas-
sifier performs poorly.

In this paper, we argue that algorithm design should be inéar by two analogous
ideas:

1. Algorithms with high average running times can be comibiioform an algorithm
portfolio with low average running time when the algorithrasy inputs are suf-
ficiently uncorrelated.

2. New algorithm design should focus on problems on whichctimeent algorithm
portfolio performs poorly.

Of course the analogy to boosting is imperfect; we discuésrdinces in section 5.

1.2 Case Study: Combinatorial Auctions (Weighted Set Packig)

To discuss the effectiveness of an algorithm design metbgggit is necessary to per-
form a case study. We chose to consider the combinatoritibauginner determination
problem (WDP), and made use of runtime prediction technignesuntime data from
our previous work [10]. However, it must be emphasized tlwatenof the techniques
we propose here are particular to this problem domain. Thedusion of this paper
will also consider other domains; in particular, we have $@aghe positive initial results
building portfolios for SAT.

Combinatorial auctions provide a general framework fayetion problems among
self-interested agents by allowing bids for bundles of goMIDP is a weighted set
packing problem (SPP): the goal is to choose a non-conflititbset of bids maxi-
mizing the seller’s revenue. SPPASP-Complete, and also inapproximable within a
constant factor (cf. [15]). Let be the number of goods, amd be the number of bids.
A bid is a pair< S;,p; >, whereS; C {1,...,n} is the set of goods requested by
bid 4, andp; is that bid’s price offer. WDP can be formulated as the follogvinteger
program:

m
maximize: inpi

=1

subjectto: Y w; <1 Vg
i|geS;
z; € {0,1} Vi

We consider three algorithms for solving WDP: ILOG’s CPLEXkage;GL (Gonen-
Lehmann) [5], a simple branch-and-bound algorithm with ERIs LP solver as its
heuristic; and CASS [2], a more complex branch-and-bougdrahm with a non-LP
heuristic. Unfortunately, we were unable to get access tBGB [16], another widely-
cited WDP algorithm.

1.3 Overview

In the next three sections we give general methods for owstb@panalogy in algorithm
design. In section 2 we present a methodology for conshgetigorithm portfolios and
show some results from our case study. We go on in section eopractical exten-
sions to our methodology, including techniques for avaidime computation of costly
features, trading off between accuracy on hard and eagnicss$, and building models
when runtime data is capped at some maximum running timeadtion 4 we consider
the empirical evaluation of portfolios, and describe a rodtfor using a learned model
of runtime to generate a test distribution that will be handd portfolio. Similar tech-
niques can be used to generate instances that score highlgigen “realism” metric.
Finally, section 5 discusses our design choices and comiaeen to the choices made
in related work.

2 Algorithm Portfolios

Our previous work [10] demonstrated that statistical regign can be used to learn
surprisingly accurate algorithm-specific models of the ieizgd hardness of given dis-
tributions of problem instances. In short, the method psegdn that work is:

1. Use domain knowledge to select features of problem instathat might be in-
dicative of runtime.

2. Generate a set of problem instances from the given digiitp, and collect runtime
data for the algorithm on each instance.

3. Use regression to learn a real-valued function of theufeatthat predicts runtime.

Given this existing technique for predicting runtime, wevmropose building port-
folios of multiple algorithms as follows:

1. Train a model for each algorithm, as described above.

2. Given an instance:
(a) Compute feature values
(b) Predict each algorithm’s running time using runtime eled
(c) Run the algorithm predicted to be fastest

This technique is powerful, but deceptively simple. Focdssion and comparison
with other approaches in the literature, please see sestiorAs we will demonstrate
in our case study, such portfolios can dramatically outperfthe algorithms of which
they are composed.

3

centage In class

v\.\.\\\\\\

=/

e\

@, 0 ‘mﬁﬁﬁﬁ
0 02 04 06 08 1 12 14 16 18

Fig. 1. Gross Hardness for CPLEX (from [10]) Fig. 2. Mean Absolute Error (from [10])

2.1 Case Study: Experimental Setup

We performed our case study using data collected in our pargt[d0], which we recap
briefly in this section. All of our results focused on probkeaf a fixed size: numbers of
goods and non-dominated bids were held constant to 256 &b@iré8pectively. Our
instance distribution involved making a uniform choiceviben nine of the distribu-
tions from the Combinatorial Auction Test Suite (CATS) [1dhd randomly choosing
parameters for each instance. The complete dataset wasosethpf about 4500 in-
stances. For each instance we collected runtime data foERHL1, and computed 25
features that fall roughly into four categories:

1. Norms of the linear programming slack vector (integyadit the LP relaxation of
the IP)

2. Deviations of prices

3. Node statistics of the Bid-Good bipartite graph

4. Various statistics of the Bid graph (effectively, the lgean’s constraint graph)

All data was collected on 550 MHz Pentium Xeon machines moptiinux 2.2;
over 3 years of CPU time was spent gathering this data. Figovs a 3D histogram
of the distribution of hard instances across our datasete@b that CPLEX’s runtime
varied by seven orders of magnitude even though the numbgoaits and bids was
held constant. Also, there is considerable variation withbst of the distributions.

Using quadratic regression, we were able to build very ateunodels of the loga-
rithm of runtime. Fig. 2 shows a histogram of the mean absaduator in predicting the
log of CPLEX’s runtime observed on test set instances. Sincenethodology relies

2 In a separate research effort, we are in the process of extendingtkdram [10] to models
of variable problem size; when these models become available it will lstp@so extend the
techniques presented in this paper without any modification.

on machine learning, we split the data into training, vdl@a and test sets. We report
our portfolio runtimes only on the test set that was neved tsérain or evaluate mod-
els. An error of 1 in predicting the log means that runtime méspredicted by a factor
of 10, or roughly that an instance was misclassified by onbebins in Fig. 1; observe
that nearly all prediction errors are less than 1.

6000 800

5000 700

4000

3000

Time (s)

2000

1000

B §

GL CASS CPLEX CPLEX Portfolio Optimal

0,

Fig. 3. Algorithm and Portfolio Runtimes

OCASS
oGL
BECPLEX

OCASS
oGL
BECPLEX

Fig. 4. Optimal Fig. 5. Selected

2.2 Case Study Results

We now turn to new results. First, we used the methodolodgrite] in section 2.1
to build regression models for two new algorithms (GL and GAS-ig. 3 compares
the average runtimes of our three algorithms (CPLEX, CASS tG&that of the portfo-

lio®. Note that CPLEX would be chosen under winner-take-all dlgm selection. The

“optimal” bar shows the performance of an ideal portfolioamhalgorithm selection is
performed perfectly and with no overhead. The portfolio flaows the time taken to
compute features (light portion) and the time taken to renstblected algorithm (dark
portion). Despite the fact that CASS and GL are much slowen ttPLEX on average,
the portfolio outperforms CPLEX by roughly a factor of 3. Mower, neglecting the

% Note the change of scale on the graph, and the repeated CPLEX bar

cost of computing features, our portfolio’s selectionsetakly 5% longer to run than
the optimal selections.

Figs. 4 and 5 show the frequency with which each algorithneliscded in the ideal
portfolio and in our portfolio. They illustrate the quality our algorithm selection and
the relative value of the three algorithms. Observe thatpautfolio does not always
make the right choice (in particular, it selects GL much meiten than it should).
However, most of the mistakes made by our models occur whendbgorithms have
very similar running times; these mistakes are not verylgastplaining why our port-
folio’s choices have a running time so close to optimal.

These results show that our portfolio methodology can werdy well even with a
small number of algorithms, and when one algorithm’s avegyformance is consid-
erably better than the others’. We suspect that our tecksiqauld work even better in
other settings.

3 Extending our Portfolio Methodology

Once it has been demonstrated that algorithm portfoliosoffan significant speedups
over winner-take-all algorithm selection, it is worthwéhtlo consider modifications to
the methodology that make it more useful in practice. Spedifi, we describe methods
for reducing the amount of time spent computing featuresisfiorming the response
variable, and capping runs of some or all algorithms.

3.1 Smart Feature Computation

Feature values must be computed before the portfolio cansehan algorithm to run.
We expect that portfolios will be most useful when they camebéeveral exponential-
time algorithms having high runtime variance, and that fadynomial-time features
should be sufficient for most models. Nevertheless, on sost@nces the computa-
tion of individual features may take substantially londeart one or even all algorithms
would take to run. In such cases it would be desirable to parfalgorithm selection
without spending as much time computing features, evereatxpense of some accu-
racy in choosing the fastest algorithm. In order to achibi® tve partition the features
into sets ordered by time complexity;, . .., S;, with ¢ > j implying that each feature
in S; takes significantly longer to compute than each featurs;if The portfolio can
start by computing the easiest features, and iterativatypete the next set only if the
expected benefit to selection exceeds the cost of compuitdiore precisely:

1. For each sefb; learn or provide a model(S;) that estimates time required to
compute it. Often, this could be a simple average time sdajadput size.

2. Divide the training examples into two sets. Using the fiest train modeld/; ... M/,
with M predicting algorithm’s runtime using features i@f:1 S;. Note that)/}
is the same as the model for algorithnm our basic portfolio methodology. Let
M, be a portfolio which selects argmifi/;.

4 We assume here that features will have low runtime variance. We hawe this assumption
to hold in our case study. If feature runtime variance makes it difficulattitmon the features
into time complexity sets, smart feature computation is more difficult.

3. Using the second training set, learn modBls. .. D;_1, with Dy, predicting the
difference in runtime between the algorithms selectedhyand M., based on
Si. The second set must be used to avoid training the differnemoaiels on data to
which the runtime models were fit.

Given an instance, the portfolio now works as follows:

4. Forj=1tol
(a) Compute features ifi;
(b) If D;[z] > ¢(S;+1)[z], continue.
(c) Otherwise, return with the algorithm predicted to bedasaccording td/;.

3.2 Transforming the Response Variable

Average runtime is an obvious measure of portfolio perforoesf one’s goal is to min-
imize computation time over a large number of instancesceSour models minimize
root mean squared error, they appropriately penalize 2@nskscof error equally on in-
stances that take 1 second or 10 hours to run. However, amettgonable goal may be

to perform well on every instance regardless of its hardringhis case, relative error

is more appropriate. Let’ andr; be the portfolio’s runtime and the optimal runtime
respectively on instandg andn be the number of instances. One measure that gives an
insight into the portfolio’s relative error igercent optimal

Z 1
Tl.
ilrf=r;

Another measure of relative erroraserage percent suboptimal

D *
lzﬁ_ﬁ‘
e

n ; Ti

Taking a logarithm of runtime is a simple way to equalize thpdrtance of relative
error on easy and hard instances. Thus, models that preldigtod runtime help to im-
prove the average percent suboptimal, albeit at some egpeitsrms of the portfolio’s
average runtime. In Figure 6 (overleaf) we show three difiefunctions; linear (iden-
tity) and log are the extreme values; clearly, many funatioan fall in between. The
functions are normalized by their maximum value, sincedbiss not affect regression,
but allows us to better visualize their effect. In our casglgt(section 3.4) we found
that the cube root function was particularly effective.

3.3 Capping Runs

The methodology of section 2 requires gathering runtima @t every algorithm on
every problem instance in the training set. While the time obthis step is fundamen-
tally unavoidable for our approach, gathering perfect ftatavery instance can take an
unreasonably long time. For example, if algoritlimis usually much slower tham,
but in some cases dramatically outperformsa perfect model of;'s runtime on hard

instances may not be needed to discriminate between thelgodgtams. The process
of gathering data can be made much easier by capping theneinfieach algorithm at
some maximum and recording these runs as having terminatied eaptime. This ap-
proach is safe if the captime is chosen so that it is (almdsgys significantly greater
than the minimum of the algorithms’ runtimes; if not, it mighill be preferable to sac-
rifice some predictive accuracy for dramatically reducedehdouilding time. Note that
if any algorithm is capped, it can be dangerous (particyhaithout a log transforma-
tion) to gather data for any other algorithm without cappatghe same time, because
the portfolio could inappropriately select the algorithrithathe smaller captime.

3.4 Case Study Results

Fig. 7 shows the performance of the smart feature computdigrussed in section 3.1,
with the upper part of the bar indicating the time spent caingueatures. Compared
to computing all features, we reduce overhead by almostvhighf nearly no cost in
running time.

100% 300

80% -

60% -

Transformation

Cube Root e
40% - .g 150
£
20% i ’ 100
Linear
50 1
0% ‘ ‘ ‘ :
0% 20% 40% 60% 80% 100% 0
Runtime (% of max) Regular Smart
Fig. 6. Transformation F'ns (Normalized) Fig. 7. Smart Features

Average Runtime 9% Optimal Average % Suboptimal
(Optimal) 216.4 s 100 0
Log 236.5s 97 9
Cuberoot 2256s 89 17
Linear 225.1s 81 1284

Table 1. Portfolio Results

Table 1 shows the effect of our response variable transfimmsaon average run-
time, percent optimal and average percent suboptimal. Teeréiw has results that
would be obtained by a perfect portfolio. As discussed iise@8.2, the linear (iden-
tity) transformation yields the best average runtime, attie log function leads to bet-
ter algorithm selection. We tried several transformationctions between linear and

log. Here we only show the best, cube root: it has nearly tineesaverage runtime
performance as linear, but also made choices nearly asasebuas log.

4 Focused Algorithm Design

Once we have decided to select among existing algorithmg agportfolio approach, it
is necessary to reexamine the way we design and evaluaté&lahge. Since the purpose
of designing new algorithms is to reduce the time that it ke to solve problems,
designers should aim to produce new algorithms that comgiéan existing portfolio.
First, it is essential to choose a distributiéhthat reflects the problems that will be
encountered in practice. Given a portfolio, the greatepbapnity for improvement is
on instances that are hard for that portfolio, commorDinor both. More precisely,
the importance of a region of problem space is proportioméhé amount of time the
current portfolio spends working on instances in that negithis is analogous to the
principle from boosting that new classifiers should be &dion instances that are hard
for the existing ensemble, in the proportion that they odctine original training set.

4.1 Inducing Hard Distributions

Let H; be a model of portfolio runtime based on instance featu@ssteucted as the
minimum of the models that constitute the portfolio. By naliming, we can reinter-
pret this model as a density functiéry. By the argument above, we should generate
instances from the product of this distribution and ourioagidistribution,D. However,
it is problematic to sample from - k;: D may be non-analytic (an instance generator),
while h; depends on features and so can only be evaluated after andestas been
created.

One way to sample from - i is rejection sampling [1]: generate problems from
D and keep them with probability proportional &g. This method works best when
another distribution is available to guide the samplingcpss toward hard instances.
Test distributions usually have some tunable paraméigrand although the hardness
of instances generated with the same parameter values cawidely, 7p° will often
be somewhat predictive of hardness. We can generate iestdram D - h¢ in the
following way=>

1. Create a hardness modg), with featuresp’, and normalize it to create a pdf,.
2. Generate a large number of instances flomh,,.
3. Construct a distribution over instances by assignindy éastances probability

proportional tof:—((j)) and select an instance by sampling from this distribution.

Observe that ify, turns out to be helpful, hard instances frdm- L will be en-
countered quickly. Even in the worst case whgalirects the search away from hard

5 In true rejection sampling step 2 would generate a single instance that wethémaccepted
or rejected in step 3. Our technique approximates this process, but'td@eglire us to nor-
malize Hy and allows us to output an instance after generating a constant nurrgaenples.

instances, observe that we still sample from the corretildigion because the weights
are divided byh,, (s).

In practice,D may be factored aB,-D,,,, whereD, is a distribution over otherwise
unrelated instance generators with different parametssesp andD,, is a distribution
over the parameters of the chosen instance generatorthis case it is difficult to
learn a singleld,,. A good solution is to factoh, ashg - hy,, Whereh,, is a hardness
model using only the choice of instance generator as a feaamdh,, is a hardness
model in instance generatds parameter space. Likewise, instead of using a single
feature-space hardness modg}, we can train a separate model for each generator
H;,; and normalize each to a p#if ;.5 The goal is now to generate instances from the
distributionD,, - D,,, - h¢ ;, which can be done as follows:

1. For every instance generatorcreate a hardness modé),, with featuresp;, and
normalize it to create a pd#,, .

2. Construct a distribution over instance generatgrsvhere the probability of each
generatog is proportional to the average hardness of instances geddg.

3. Generate a large number of instances @ - hy) - (Dp, - hyp,)
(a) select a generatoby sampling fromD,, - hg
(b) select parameters for the generator by sampling fiyn: h,,
(c) run generatoi with the chosen parameters to generate an instance.

4. Construct a distribution over instances by assigning @stances from generator

1 probability proportional to—11(5)__ and select an instance by sampling from

S hg(s)-hp,(s)*
this distribution.

4.2 Inducing Realistic Distributions

It is important for our portfolio methodology that we begiithva “realistic” D: that

is, a distribution accurately reflecting the sorts of prafdesxpected to occur in prac-
tice. Care must always be taken to construct a generatot of generators producing
instances that are representative of problems from thettai@main. Sometimes, it is
possible to construct a functid®y that scores the realism of a generated instance based
on features of that instance; such a function can encodei@utliinformation about
the nature of realistic data that cannot easily be expreassadjenerator. If a function
Ry is provided, we can constru€l from a parameterized set of instance generators by
using Ry in place of {; above and learning, in the same way we learndg,. This

can allow us to make informed choices when setting the parmef instance gener-
ators, and also to discard less realistic data after it has generated. Note that when
inducing hard distributions a hardness model had to be useause it was infeasible

to score each sample by actual portfolio runtime. In the cd$educing realistic dis-
tributions this is no longer a problem, because the realismetfon can be evaluated

on each sample. Therefore, our rejection sampling teclerigjguaranteed to generate
instances with increased average realism scores. The psearheter-space modeis

can still improve performance by reducing the number of dampeeded for obtaining
good results.

® However, the case study results presented in figs. 8-10 use hardodsts H trained on
the whole dataset rather than using models trained on individual distrisutiearning new
models would probably yield even better results.

80%

70% -

O Original
W Harder

60%

50% -

40% -

30%

20%

0% T T T
-1 0 1 2 3 4 5
Log, Runtime (s)

Fig. 8. Inducing Harder Distributions

100% 40%

90% 7 359 4

80% 1 ‘ O Original 20% 4 O Original
70% W Harder W Harder

60% 4 25% -

50% - 20%
40%
30%
20%
10% -

15% -

10% -

5%

0% -+ 0% - y 7
0.05 0.1 0.15 0.2 0.25 0.3 0.35 04 045 05 5 10 01 02 03 04 05 06 07 08 09 5 31
Runtime (s) Runtime (s)

Fig. 9. Matching Fig. 10.Scheduling

4.3 Case Study Results

Due to the wide spread of runtimes in our composite distidioud (7 orders of mag-
nitude) and the high accuracy of our modgl [10], it is quite easy for our technique
to generate harder instances. These results are presetiitgdd. Because our runtime
data was capped, there is no way to know if the hardest inssaimcthe new distri-
bution are harder than the hardest instances in the oridisglbution; note, however,
that very few easy instances are generated. Instances indheed distribution came
predominantly from the CATS “arbitrary” distribution, witmost of the rest from “L3".

To demonstrate that our technique also works in more clgilignsettings, we
sought a different distribution with small runtime varian@s it happens, there has
been ongoing discussion in the WDP literature about whekioeset CATS distributions
[11] that are relatively easy could be configured to be ha(dee e.g., [4,16]). We
consider two easy distributions with low variance from CAR&tchingandschedul-
ing, and show that they indeed can be made harder than origimadjyosed. Figures
9 and 10 show the histograms of the runtimes of the ideal @artbefore and after
our technique was applied. In fact, for these two distrilmdiwe generated instances
that were (respectively) 100 and 50 times harder than amythie had previously seen!
Moreover, theaverageruntime for the new distributions was greater than the oleser
maximunrunning time on the original distribution.

5 Discussion and Related Work

Although it is helpful, our analogy to boosting is clearlytrperfect. One key differ-
ence lies in the way components are aggregated: classiiarbe combined through
majority voting, whereas the whole point of algorithm sélatis to run only a single
algorithm. We instead advocate the use of learned modelsndiime as the basis for
algorithm selection, which leads to another importantedéhce. It is not enough for
the easy problems of multiple algorithms to be uncorrelatesl models must also be
accurate enough to reliably recommend against the slowerittims on these uncor-
related instances. Finally, while it is impossible to img@@n correctly classifying an
instance, it is almost always possible to solve a problerante more quickly. Thus
improvement is possible on easy instances as well as on istahces; the analogy to
boosting holds in the sense that focusing on hard regioriegitoblem space increases
the potential gain in terms of reduced average portfolidinues.

5.1 Algorithm Selection

It has long been understood that algorithm performance aansubstantially across
different classes of problems. Rice [13] was the first to flize algorithm selection
as a computational problem, framing it in terms of functipp@ximation. Broadly, he
identified the goal of selecting a mappifgz) from the space of instances to the space
of algorithms, to maximize some performance measurd férf,). Rice offered few
concrete techniques, but all subsequent work on algoritblecson can be seen as
falling into his framework. We explain our choice of methémyy by relating it to
other approaches for algorithm selection that have beguopeal in the literature.

Parallel Execution One tempting alternative to portfolios that select a sirajtg-
rithm is the parallel execution of all available algorithmvghile it is often true that
additional processors are readily available, it is alserofhe case that these processors
can be put to uses besides running different algorithms iialle§ such as paralleliz-
ing a single search algorithm or solving multiple problerstémces at the same time.
Meaningful comparisons of running time between parallel aan-parallel portfolios
require that computational resources be fixed, with pdretecution modelled as ideal
(no-overhead) task swapping on a single processort'l(e) be the time it takes to
run the algorithm that is fastest on instangeand letn be the number of algorithms.
A portfolio that executes all algorithms in parallel on exstex will always take time
nt*(z). On the data from our case study such parallel executioncaghly the same
average runtime as winner-take-all algorithm selectioa fiave three algorithms and
CPLEX is three times slower than the optimal portfolio), ledur techniques do much
better, achieving running times of roughlyo5t*(z).

In some domains, parallel executioanbe a very effective technique. Gomes and
Selman [3] proposed such an approach for incomplete SATrittigus, using the term
portfolio to describe a set of algorithms run in parallel. In this danrantime depends
heavily on variables such as random seed, making runtinfieudifto predict; thus
parallel execution is likely to outperform a portfolio thettooses a single algorithm.

In such cases it is possible to extend our methodology teveftho parallel execution.
We can add one or more new algorithms to our portfolio, wittodthm standing as
a placeholder for the parallel execution/gfof the original algorithms; in the training
datas would be given a running time df; times the minimum of its constituents. This
approach would allow portfolios to choose to task-swapafetgorithms in parts of the
feature space where the minimums of individual algorithrastimes are much smaller
than their means, but to choose single algorithms in othes d the feature space.
Our use of the term “portfolio” may thus be seen as an extarsfithe term coined by
Gomes and Selman, referring to a set of algorithms and a&girébr selecting a subset
(perhaps one) for parallel execution.

Classification Since algorithm selection is fundamentally discriminativit entails
choosing the algorithm that will exhibit minimal runtime—askification is an obvious
approach to consider. Any standard classification algoriiag., a decision tree) could
be used to learn which algorithm to choose given featuresefristance and labelled
training examples. The problem is that such classificatigarahms use the wrong er-
ror metric: they penalize misclassifications equally rdtgss of their cost. We want to
minimize a portfolio’s average runtime, not its accuracylmwosing the optimal algo-
rithm. Thus we should penalize misclassifications more wherdifference between
the runtimes of the chosen and fastest algorithms is layewhen it is small. This is
just what happens when our decision criterion is to selecsthallest prediction among
a set of regression models that were fit to minimize root mgaargd error.

A second classification approach entails dividing runninges into two or more
bins, predicting the bin that contains the algorithm’s inmet and then choosing the
best algorithm. For example, Horvitz et. al. [6, 14] usedsification to predict runtime
of CSP and SAT solvers with inherently high runtime variaffoeavy tails). Despite
its similarity to our portfolio methodology, this approastiffers from the use of a clas-
sification algorithm to predict runtime. First, the leamialgorithm does not use an
error function that penalizes large misclassification§ l§gfmore than one bin) more
heavily than small misclassifications (off by one bin). Setahis approach is unable
to discriminate between algorithms when multiple predicsi fall into the same bin.
Finally, since runtime is a continuous variable, class loawies are artificial. Instances
with runtimes lying very close to a boundary are likely to bisctassified even by a
very accurate model, making accurate models harder to.learn

Markov Decision ProcessesPerhaps most related to our paper is work by Lagoudakis
and Littman ([7, 8]). They worked within the MDP frameworkydaconcentrated on
recursive algorithms (e.g. sorting, SAT), sequentiallivieg the algorithm selection
problem on each subproblem. This work demonstrates engiograesults; however,

its generality is limited by several factors. First, the o$algorithm selection at each
stage of a recursive algorithm can require extensive ragodind may simply be impos-
sible with ‘black-box’ commercial or proprietary algornitts, which are often among the
most competitive. Second, solving the algorithm selegpiarblem recursively requires
that the value functions be very inexpensive to computegiircase study we found that
more computationally expensive features were requireddourate predictions of run-

time. Finally, these techniques can be undermined by norkd#éan algorithms, such
as those using clause learning, taboo lists or other forrdgmdémic programming.

Of course, our approach can also be described in an MDP frarkewith each
action (choice of algorithm) leading to a terminal state] eeward equal to the negative
of runtime. Optimal policy selection is trivial given a goedlue function; thus the
key to success is good value estimation. Our approach erapkasaking the value
functions—that is, models of runtime—explicit, since thieydes the best defense
against good but fragile policies. We do not describe ouretwds MDPs because the
framework is redundant in the absence of sequential decisiaking.

Different Regression Approaches Lobjois and Lemtre [12] select among several
simple branch-and-bound algorithms based on a predicfioimnming time. This work
is similar in spirit to our own; however, their predictioniased on a single feature and
works only on a particular class of branch-and-bound atigors.

Since our goal is to discriminate among algorithms, it miggem more appropriate
to learn models of pairwise differences between algorithntimes, rather than models
of absolute runtimes. For linear regression (and the forim®olinear regression used
in our work) it is easy to show that the two approaches are emadtically equivalent.

5.2 Inducing Hard Distributions

It is widely recognized that the choice of test distributisimportant for algorithm
development. In the absence of general techniques for gmgimstances that are both
realistic and hard, the development of new distributions tisually been performed
manually. An excellent example of such work is Selman ef[&8]), which describes
a method of generating SAT instances near the phase tan#itieshold, which are
known to be hard for most SAT solvers.

6 Conclusions

Just as boosting allows weak classifiers to work togethectfkly, algorithms can be
combined into portfolios to build a whole greater than thesaf its parts. First, we
have described how to build such portfolios. Our techniqeaes be elaborated to re-
duce the cost of computing features, to reduce the time gphering training data
by capping runs, and to strike the right balance between ¢hnalpies for mispredict-
ing easy and hard instances. Second, we argued that algatikign should focus on
problem instances upon which a portfolio of existing altforis spends most of its
time. We have provided techniques for inducing such digtidims, and also for refining
distributions to emphasize instances that have high saores given ‘realism’ func-
tion. We performed a case study on combinatorial auctiam$ showed that a portfolio
composed of CPLEX and two older—and generatlychslower—algorithms outper-
formed CPLEX alone by about a factor of 3. In future work, wen & perform case
studies of our methodology on other hard problems; our fifattdn this direction is a
portfolio of 10 algorithms which we have entered in the 2083 Sompetition.

Acknowledgments

Thanks to Ryan Porter, Carla Gomes and Bart Selman for Hedfaussions. This
work was supported by DARPA grant F30602-00-2-0598, thelligent Information
Systems Institute at Cornell, and a Stanford GraduateweHip.

References

1. A. Doucet, N. de Freitas, and N. Gordon(e&gquential Monte Carlo Methods in Practice
Springer-Verlag, 2001.

2. Y. Fujishima, K. Leyton-Brown, and Y. Shoham. Taming the computaticomplexity of
combinatorial auctions: Optimal and approximate approachddClal, 1999.

3. C. Gomes and B. Selman. Algorithm portfoliogrtificial Intelligence 126(1-2):43-62,
2001.

4. R. Gonen and D. Lehmann. Optimal solutions for multi-unit combindtauetions: Branch
and bound heuristics. IACM Conference on Electronic Commer2600.

5. R. Gonen and D. Lehmann. Linear programming helps solving langé-umit combi-
natorial auctions. Technical Report TR-2001-8, Leibniz Center fseRrch in Computer
Science, April 2001.

6. E. Horvitz, Y. Ruan, C. Gomes, H. Kautz, B. Selman, and M. Chioger A Bayesian
approach to tackling hard computational problemsUd, 2001.

7. M. Lagoudakis and M. Littman. Algorithm selection using reinforcenfegntning. InNICML,
2000.

8. M. Lagoudakis and M. Littman. Learning to select branching rules irbfeL procedure
for satisfiability. INLICS/SAT2001.

9. K. Leyton-Brown, E. Nudelman, G. Andrew, J. McFadden, ané&hioham. A portfolio
approach to algorithm selection. IBCAI, 2003.

10. K. Leyton-Brown, E. Nudelman, and Y. Shoham. Learning theigcaphardness of opti-
mization problems: The case of combinatorial auction<Chn2002.

11. K. Leyton-Brown, M. Pearson, and Y. Shoham. Towards aansat test suite for combina-
torial auction algorithms. IACM EC 2000.

12. L. Lobjois and M. Lemiire. Branch and bound algorithm selection by performance predic-
tion. In AAAI, 1998.

13. J. R. Rice. The algorithm selection probleffdvances in Computer$5:65-118, 1976.

14. Y.Ruan, E. Horvitz, and H. Kautz. Restart policies with dependammng runs: A dynamic
programming approach. i@P, 2002.

15. T. Sandholm. An algorithm for optimal winner determination in combiti@tauctions. In
1JCAI, 1999.

16. T. Sandholm, S. Suri, A. Gilpin, and D. Levine. CABOB: A fast opfiragorithm for
combinatorial auctions. IRICAI, 2001.

17. R. Schapire. The strength of weak learnabiliiachine Learning5:197-227, 1990.

18. B. Selman, D. G. Mitchell, and H. J. Levesque. Generating hardiahtiisy problems.
Artificial Intelligence 81(1-2):17—-29, 1996.

