
Boosting as a Metaphor for Algorithm Design

Kevin Leyton-Brown, Eugene Nudelman,
Galen Andrew, Jim McFadden, and Yoav Shoham

{kevinlb;eugnud;galand;jmcf;shoham}@cs.stanford.edu

Stanford University, Stanford CA 94305

Abstract. Hard computational problems are often solvable by multiple algo-
rithms that each perform well on different problem instances. We describe tech-
niques for building an algorithm portfolio that can outperform its constituental-
gorithms, just as the aggregate classifiers learned by boosting outperform the clas-
sifiers of which they are composed. We also provide a method for generating test
distributions to focus future algorithm design work on problems that are hard for
an existing portfolio. We demonstrate the effectiveness of our techniques on the
combinatorial auction winner determination problem, showing that our portfolio
outperforms the state-of-the-art algorithm by a factor of three.1

1 Introduction

Although some algorithms are better than others on average,there is rarely a best al-
gorithm for a given problem. Instead, it is often the case that different algorithms per-
form well on different problem instances. Not surprisingly, this phenomenon is most
pronounced among algorithms for solvingNP-Hard problems, because runtimes for
these algorithms are often highly variable from instance toinstance. When algorithms
exhibit high runtime variance, one is faced with the problemof deciding which algo-
rithm to use; in 1976 Rice dubbed this the “algorithm selection problem” [13]. In the
nearly three decades that have followed, the issue of algorithm selection has failed to
receive widespread study, though of course some excellent work does exist. By far,
the most common approach to algorithm selection has been to measure different algo-
rithms’ performance on a given problem distribution, and then to use only the algorithm
having the lowest average runtime. This approach, to which we refer as “winner-take-
all”, has driven recent advances in algorithm design and refinement, but has resulted
in the neglect of many algorithms that, while uncompetitiveon average, offer excel-
lent performance on particular problem instances. Our consideration of the algorithm
selection literature, and our dissatisfaction with the winner-take-all approach, has led
us to ask the following two questions. First, what general techniques can we use to
perform per-instance (rather than per-distribution) algorithm selection? Second, once
we have rejected the notion of winner-take-all algorithm evaluation, how ought novel
algorithms to be evaluated? Taking the idea of boosting frommachine learning as our
guiding metaphor, we strive to answer both questions.

1 This work has previously been published as a two-page extended abstract [9].

1.1 The Boosting Metaphor

Boosting is a machine learning paradigm due to Schapire [17]and widely studied since.
Although this paper does not make use of any technical results from the boosting lit-
erature, it takes its inspiration from the boosting philosophy. Stated simply, boosting is
based on two insights:

1. Poor classifiers can be combined to form an accurate ensemble when the classifiers’
areas of effectiveness are sufficiently uncorrelated.

2. New classifiers should be trained on problems on which the current aggregate clas-
sifier performs poorly.

In this paper, we argue that algorithm design should be informed by two analogous
ideas:

1. Algorithms with high average running times can be combined to form an algorithm
portfolio with low average running time when the algorithms’ easy inputs are suf-
ficiently uncorrelated.

2. New algorithm design should focus on problems on which thecurrent algorithm
portfolio performs poorly.

Of course the analogy to boosting is imperfect; we discuss differences in section 5.

1.2 Case Study: Combinatorial Auctions (Weighted Set Packing)

To discuss the effectiveness of an algorithm design methodology, it is necessary to per-
form a case study. We chose to consider the combinatorial auction winner determination
problem (WDP), and made use of runtime prediction techniquesand runtime data from
our previous work [10]. However, it must be emphasized that none of the techniques
we propose here are particular to this problem domain. The full version of this paper
will also consider other domains; in particular, we have hadsome positive initial results
building portfolios for SAT.

Combinatorial auctions provide a general framework for allocation problems among
self-interested agents by allowing bids for bundles of goods. WDP is a weighted set
packing problem (SPP): the goal is to choose a non-conflicting subset of bids maxi-
mizing the seller’s revenue. SPP isNP-Complete, and also inapproximable within a
constant factor (cf. [15]). Letn be the number of goods, andm be the number of bids.
A bid is a pair< Si, pi >, whereSi ⊆ {1, . . . , n} is the set of goods requested by
bid i, andpi is that bid’s price offer. WDP can be formulated as the following integer
program:

maximize:
m∑

i=1

xipi

subject to:
∑

i|g∈Si

xi ≤ 1 ∀g

xi ∈ {0, 1} ∀i

We consider three algorithms for solving WDP: ILOG’s CPLEX package;GL (Gonen-
Lehmann) [5], a simple branch-and-bound algorithm with CPLEX’s LP solver as its
heuristic; and CASS [2], a more complex branch-and-bound algorithm with a non-LP
heuristic. Unfortunately, we were unable to get access to CABOB [16], another widely-
cited WDP algorithm.

1.3 Overview

In the next three sections we give general methods for our boosting analogy in algorithm
design. In section 2 we present a methodology for constructing algorithm portfolios and
show some results from our case study. We go on in section 3 to offer practical exten-
sions to our methodology, including techniques for avoiding the computation of costly
features, trading off between accuracy on hard and easy instances, and building models
when runtime data is capped at some maximum running time. In section 4 we consider
the empirical evaluation of portfolios, and describe a method for using a learned model
of runtime to generate a test distribution that will be hard for a portfolio. Similar tech-
niques can be used to generate instances that score highly ona given “realism” metric.
Finally, section 5 discusses our design choices and compares them to the choices made
in related work.

2 Algorithm Portfolios

Our previous work [10] demonstrated that statistical regression can be used to learn
surprisingly accurate algorithm-specific models of the empirical hardness of given dis-
tributions of problem instances. In short, the method proposed in that work is:

1. Use domain knowledge to select features of problem instances that might be in-
dicative of runtime.

2. Generate a set of problem instances from the given distribution, and collect runtime
data for the algorithm on each instance.

3. Use regression to learn a real-valued function of the features that predicts runtime.

Given this existing technique for predicting runtime, we now propose building port-
folios of multiple algorithms as follows:

1. Train a model for each algorithm, as described above.
2. Given an instance:

(a) Compute feature values
(b) Predict each algorithm’s running time using runtime models
(c) Run the algorithm predicted to be fastest

This technique is powerful, but deceptively simple. For discussion and comparison
with other approaches in the literature, please see section5.1. As we will demonstrate
in our case study, such portfolios can dramatically outperform the algorithms of which
they are composed.

-1
0

1

2

3

4

5 matching

scheduling

L6

L2

regions

L4

arbitrary

L7

L3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
er

ce
n

ta
g

e
In

 c
la

ss

Runtime
(order of

magnitude)

Fig. 1.Gross Hardness for CPLEX (from [10])

0

50

100

150

200

250

300

350

400

450

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Fig. 2.Mean Absolute Error (from [10])

2.1 Case Study: Experimental Setup

We performed our case study using data collected in our past work [10], which we recap
briefly in this section. All of our results focused on problems of a fixed size: numbers of
goods and non-dominated bids were held constant to 256 and 1000 respectively.2 Our
instance distribution involved making a uniform choice between nine of the distribu-
tions from the Combinatorial Auction Test Suite (CATS) [11], and randomly choosing
parameters for each instance. The complete dataset was composed of about 4500 in-
stances. For each instance we collected runtime data for CPLEX 7.1, and computed 25
features that fall roughly into four categories:

1. Norms of the linear programming slack vector (integrality of the LP relaxation of
the IP)

2. Deviations of prices
3. Node statistics of the Bid-Good bipartite graph
4. Various statistics of the Bid graph (effectively, the problem’s constraint graph)

All data was collected on 550 MHz Pentium Xeon machines running Linux 2.2;
over 3 years of CPU time was spent gathering this data. Fig. 1 shows a 3D histogram
of the distribution of hard instances across our dataset. Observe that CPLEX’s runtime
varied by seven orders of magnitude even though the number ofgoods and bids was
held constant. Also, there is considerable variation within most of the distributions.

Using quadratic regression, we were able to build very accurate models of the loga-
rithm of runtime. Fig. 2 shows a histogram of the mean absolute error in predicting the
log of CPLEX’s runtime observed on test set instances. Sinceour methodology relies

2 In a separate research effort, we are in the process of extending the work from [10] to models
of variable problem size; when these models become available it will be possible to extend the
techniques presented in this paper without any modification.

on machine learning, we split the data into training, validation, and test sets. We report
our portfolio runtimes only on the test set that was never used to train or evaluate mod-
els. An error of 1 in predicting the log means that runtime wasmispredicted by a factor
of 10, or roughly that an instance was misclassified by one of the bins in Fig. 1; observe
that nearly all prediction errors are less than 1.

0

100

200

300

400

500

600

700

800

CPLEX Portfolio Optimal
0

100

200

300

400

500

600

700

800

CPLEX Portfolio Optimal

0

1000

2000

3000

4000

5000

6000

GL CASS CPLEX

T
im

e
(s

)

0

1000

2000

3000

4000

5000

6000

GL CASS CPLEX

T
im

e
(s

)

Fig. 3.Algorithm and Portfolio Runtimes

CASS
GL
CPLEX

Fig. 4.Optimal

CASS
GL
CPLEX

Fig. 5.Selected

2.2 Case Study Results

We now turn to new results. First, we used the methodolody described in section 2.1
to build regression models for two new algorithms (GL and CASS). Fig. 3 compares
the average runtimes of our three algorithms (CPLEX, CASS, GL) to that of the portfo-
lio3. Note that CPLEX would be chosen under winner-take-all algorithm selection. The
“optimal” bar shows the performance of an ideal portfolio where algorithm selection is
performed perfectly and with no overhead. The portfolio barshows the time taken to
compute features (light portion) and the time taken to run the selected algorithm (dark
portion). Despite the fact that CASS and GL are much slower than CPLEX on average,
the portfolio outperforms CPLEX by roughly a factor of 3. Moreover, neglecting the

3 Note the change of scale on the graph, and the repeated CPLEX bar

cost of computing features, our portfolio’s selections take only 5% longer to run than
the optimal selections.

Figs. 4 and 5 show the frequency with which each algorithm is selected in the ideal
portfolio and in our portfolio. They illustrate the qualityof our algorithm selection and
the relative value of the three algorithms. Observe that ourportfolio does not always
make the right choice (in particular, it selects GL much moreoften than it should).
However, most of the mistakes made by our models occur when both algorithms have
very similar running times; these mistakes are not very costly, explaining why our port-
folio’s choices have a running time so close to optimal.

These results show that our portfolio methodology can work very well even with a
small number of algorithms, and when one algorithm’s average performance is consid-
erably better than the others’. We suspect that our techniques could work even better in
other settings.

3 Extending our Portfolio Methodology

Once it has been demonstrated that algorithm portfolios canoffer significant speedups
over winner-take-all algorithm selection, it is worthwhile to consider modifications to
the methodology that make it more useful in practice. Specifically, we describe methods
for reducing the amount of time spent computing features, transforming the response
variable, and capping runs of some or all algorithms.

3.1 Smart Feature Computation

Feature values must be computed before the portfolio can choose an algorithm to run.
We expect that portfolios will be most useful when they combine several exponential-
time algorithms having high runtime variance, and that fastpolynomial-time features
should be sufficient for most models. Nevertheless, on some instances the computa-
tion of individual features may take substantially longer than one or even all algorithms
would take to run. In such cases it would be desirable to perform algorithm selection
without spending as much time computing features, even at the expense of some accu-
racy in choosing the fastest algorithm. In order to achieve this, we partition the features
into sets ordered by time complexity,S1, . . . , Sl, with i > j implying that each feature
in Si takes significantly longer to compute than each feature inSj .4 The portfolio can
start by computing the easiest features, and iteratively compute the next set only if the
expected benefit to selection exceeds the cost of computation. More precisely:

1. For each setSj learn or provide a modelc(Sj) that estimates time required to
compute it. Often, this could be a simple average time scaledby input size.

2. Divide the training examples into two sets. Using the firstset, train modelsM i
1 . . . M i

l ,
with M i

k predicting algorithmi’s runtime using features in
⋃k

j=1 Sj . Note thatM i
l

is the same as the model for algorithmi in our basic portfolio methodology. Let
Mk be a portfolio which selects argmini M i

k.

4 We assume here that features will have low runtime variance. We have found this assumption
to hold in our case study. If feature runtime variance makes it difficult to partition the features
into time complexity sets, smart feature computation is more difficult.

3. Using the second training set, learn modelsD1 . . . Dl−1, with Dk predicting the
difference in runtime between the algorithms selected byMk andMk+1 based on
Sk. The second set must be used to avoid training the differencemodels on data to
which the runtime models were fit.

Given an instancex, the portfolio now works as follows:

4. Forj = 1 to l

(a) Compute features inSj

(b) If Dj [x] > c(Sj+1)[x], continue.
(c) Otherwise, return with the algorithm predicted to be fastest according toMj .

3.2 Transforming the Response Variable

Average runtime is an obvious measure of portfolio performance if one’s goal is to min-
imize computation time over a large number of instances. Since our models minimize
root mean squared error, they appropriately penalize 20 seconds of error equally on in-
stances that take 1 second or 10 hours to run. However, another reasonable goal may be
to perform well on every instance regardless of its hardness; in this case, relative error
is more appropriate. Letrp

i andr∗i be the portfolio’s runtime and the optimal runtime
respectively on instancei, andn be the number of instances. One measure that gives an
insight into the portfolio’s relative error ispercent optimal:

∑

i|rp
i
=r∗

i

1

n
.

Another measure of relative error isaverage percent suboptimal:

1

n

∑

i

r
p
i − r∗i
r∗i

.

Taking a logarithm of runtime is a simple way to equalize the importance of relative
error on easy and hard instances. Thus, models that predict alog of runtime help to im-
prove the average percent suboptimal, albeit at some expense in terms of the portfolio’s
average runtime. In Figure 6 (overleaf) we show three different functions; linear (iden-
tity) and log are the extreme values; clearly, many functions can fall in between. The
functions are normalized by their maximum value, since thisdoes not affect regression,
but allows us to better visualize their effect. In our case study (section 3.4) we found
that the cube root function was particularly effective.

3.3 Capping Runs

The methodology of section 2 requires gathering runtime data for every algorithm on
every problem instance in the training set. While the time cost of this step is fundamen-
tally unavoidable for our approach, gathering perfect datafor every instance can take an
unreasonably long time. For example, if algorithma1 is usually much slower thana2

but in some cases dramatically outperformsa2, a perfect model ofa1’s runtime on hard

instances may not be needed to discriminate between the two algorithms. The process
of gathering data can be made much easier by capping the runtime of each algorithm at
some maximum and recording these runs as having terminated at the captime. This ap-
proach is safe if the captime is chosen so that it is (almost) always significantly greater
than the minimum of the algorithms’ runtimes; if not, it might still be preferable to sac-
rifice some predictive accuracy for dramatically reduced model-building time. Note that
if any algorithm is capped, it can be dangerous (particularly without a log transforma-
tion) to gather data for any other algorithm without cappingat the same time, because
the portfolio could inappropriately select the algorithm with the smaller captime.

3.4 Case Study Results

Fig. 7 shows the performance of the smart feature computation discussed in section 3.1,
with the upper part of the bar indicating the time spent computing features. Compared
to computing all features, we reduce overhead by almost halfwith nearly no cost in
running time.

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Runtime (% of max)

T
ra

n
sf

o
rm

at
io

n

Linear

Cube Root

Log

Fig. 6.Transformation F’ns (Normalized)

0

50

100

150

200

250

300

Regular Smart

T
im

e
(s

)

Fig. 7.Smart Features

 Average Runtime % Optimal Average % Suboptimal

(Optimal) 216.4 s 100 0

Log 236.5 s 97 9

Cuberoot 225.6 s 89 17

Linear 225.1 s 81 1284

Table 1.Portfolio Results

Table 1 shows the effect of our response variable transformations on average run-
time, percent optimal and average percent suboptimal. The first row has results that
would be obtained by a perfect portfolio. As discussed in section 3.2, the linear (iden-
tity) transformation yields the best average runtime, while the log function leads to bet-
ter algorithm selection. We tried several transformation functions between linear and

log. Here we only show the best, cube root: it has nearly the same average runtime
performance as linear, but also made choices nearly as accurately as log.

4 Focused Algorithm Design

Once we have decided to select among existing algorithms using a portfolio approach, it
is necessary to reexamine the way we design and evaluate algorithms. Since the purpose
of designing new algorithms is to reduce the time that it willtake to solve problems,
designers should aim to produce new algorithms that complement an existing portfolio.
First, it is essential to choose a distributionD that reflects the problems that will be
encountered in practice. Given a portfolio, the greatest opportunity for improvement is
on instances that are hard for that portfolio, common inD, or both. More precisely,
the importance of a region of problem space is proportional to the amount of time the
current portfolio spends working on instances in that region. This is analogous to the
principle from boosting that new classifiers should be trained on instances that are hard
for the existing ensemble, in the proportion that they occurin the original training set.

4.1 Inducing Hard Distributions

Let Hf be a model of portfolio runtime based on instance features, constructed as the
minimum of the models that constitute the portfolio. By normalizing, we can reinter-
pret this model as a density functionhf . By the argument above, we should generate
instances from the product of this distribution and our original distribution,D. However,
it is problematic to sample fromD ·hf : D may be non-analytic (an instance generator),
while hf depends on features and so can only be evaluated after an instance has been
created.

One way to sample fromD · hf is rejection sampling [1]: generate problems from
D and keep them with probability proportional tohf . This method works best when
another distribution is available to guide the sampling process toward hard instances.
Test distributions usually have some tunable parameters−→p , and although the hardness
of instances generated with the same parameter values can vary widely, −→p will often
be somewhat predictive of hardness. We can generate instances fromD · hf in the
following way:5

1. Create a hardness modelHp with features−→p , and normalize it to create a pdf,hp.
2. Generate a large number of instances fromD · hp.
3. Construct a distribution over instances by assigning each instances probability

proportional toHf (s)
hp(s) , and select an instance by sampling from this distribution.

Observe that ifhp turns out to be helpful, hard instances fromD · hf will be en-
countered quickly. Even in the worst case wherehp directs the search away from hard

5 In true rejection sampling step 2 would generate a single instance that would be then accepted
or rejected in step 3. Our technique approximates this process, but doesn’t require us to nor-
malizeHf and allows us to output an instance after generating a constant number ofsamples.

instances, observe that we still sample from the correct distribution because the weights
are divided byhp(s).

In practice,D may be factored asDg ·Dpi
, whereDg is a distribution over otherwise

unrelated instance generators with different parameter spaces, andDpi
is a distribution

over the parameters of the chosen instance generatori. In this case it is difficult to
learn a singleHp. A good solution is to factorhp ashg · hpi

, wherehg is a hardness
model using only the choice of instance generator as a feature, andhpi

is a hardness
model in instance generatori’s parameter space. Likewise, instead of using a single
feature-space hardness modelHf , we can train a separate model for each generator
Hf,i and normalize each to a pdfhf,i.6 The goal is now to generate instances from the
distributionDg · Dpi

· hf,i, which can be done as follows:

1. For every instance generatori, create a hardness modelHpi
with features−→pi , and

normalize it to create a pdf,hpi
.

2. Construct a distribution over instance generatorshg, where the probability of each
generatori is proportional to the average hardness of instances generated byi.

3. Generate a large number of instances from(Dg · hg) · (Dpi
· hpi

)
(a) select a generatori by sampling fromDg · hg

(b) select parameters for the generator by sampling fromDpi
· hpi

(c) run generatori with the chosen parameters to generate an instance.
4. Construct a distribution over instances by assigning each instances from generator

i probability proportional to Hf,i(s)
hg(s)·hpi

(s) , and select an instance by sampling from
this distribution.

4.2 Inducing Realistic Distributions

It is important for our portfolio methodology that we begin with a “realistic” D: that
is, a distribution accurately reflecting the sorts of problems expected to occur in prac-
tice. Care must always be taken to construct a generator or set of generators producing
instances that are representative of problems from the target domain. Sometimes, it is
possible to construct a functionRf that scores the realism of a generated instance based
on features of that instance; such a function can encode additional information about
the nature of realistic data that cannot easily be expressedin a generator. If a function
Rf is provided, we can constructD from a parameterized set of instance generators by
usingRf in place ofHf above and learningrp in the same way we learnedhp. This
can allow us to make informed choices when setting the parameters of instance gener-
ators, and also to discard less realistic data after it has been generated. Note that when
inducing hard distributions a hardness model had to be used because it was infeasible
to score each sample by actual portfolio runtime. In the caseof inducing realistic dis-
tributions this is no longer a problem, because the realism functioncan be evaluated
on each sample. Therefore, our rejection sampling technique is guaranteed to generate
instances with increased average realism scores. The use ofparameter-space modelsrp

can still improve performance by reducing the number of samples needed for obtaining
good results.

6 However, the case study results presented in figs. 8–10 use hardnessmodelsHf trained on
the whole dataset rather than using models trained on individual distributions. Learning new
models would probably yield even better results.

0%

10%

20%

30%

40%

50%

60%

70%

80%

-1 0 1 2 3 4 5
Log Runtime (s)

Original
Harder

10

Fig. 8. Inducing Harder Distributions

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 5 10
Runtime (s)

Original
Harder

Fig. 9. Matching

0%

5%

10%

15%

20%

25%

30%

35%

40%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 5 31
Runtime (s)

Original
Harder

Fig. 10.Scheduling

4.3 Case Study Results

Due to the wide spread of runtimes in our composite distribution D (7 orders of mag-
nitude) and the high accuracy of our modelhf [10], it is quite easy for our technique
to generate harder instances. These results are presented in fig. 8. Because our runtime
data was capped, there is no way to know if the hardest instances in the new distri-
bution are harder than the hardest instances in the originaldistribution; note, however,
that very few easy instances are generated. Instances in theinduced distribution came
predominantly from the CATS “arbitrary” distribution, with most of the rest from “L3”.

To demonstrate that our technique also works in more challenging settings, we
sought a different distribution with small runtime variance. As it happens, there has
been ongoing discussion in the WDP literature about whether those CATS distributions
[11] that are relatively easy could be configured to be harder(see e.g., [4, 16]). We
consider two easy distributions with low variance from CATS, matchingandschedul-
ing, and show that they indeed can be made harder than originallyproposed. Figures
9 and 10 show the histograms of the runtimes of the ideal portfolio before and after
our technique was applied. In fact, for these two distributions we generated instances
that were (respectively) 100 and 50 times harder than anything we had previously seen!
Moreover, theaverageruntime for the new distributions was greater than the observed
maximumrunning time on the original distribution.

5 Discussion and Related Work

Although it is helpful, our analogy to boosting is clearly not perfect. One key differ-
ence lies in the way components are aggregated: classifiers can be combined through
majority voting, whereas the whole point of algorithm selection is to run only a single
algorithm. We instead advocate the use of learned models of runtime as the basis for
algorithm selection, which leads to another important difference. It is not enough for
the easy problems of multiple algorithms to be uncorrelated; the models must also be
accurate enough to reliably recommend against the slower algorithms on these uncor-
related instances. Finally, while it is impossible to improve on correctly classifying an
instance, it is almost always possible to solve a problem instance more quickly. Thus
improvement is possible on easy instances as well as on hard instances; the analogy to
boosting holds in the sense that focusing on hard regions of the problem space increases
the potential gain in terms of reduced average portfolio runtimes.

5.1 Algorithm Selection

It has long been understood that algorithm performance can vary substantially across
different classes of problems. Rice [13] was the first to formalize algorithm selection
as a computational problem, framing it in terms of function approximation. Broadly, he
identified the goal of selecting a mappingS(x) from the space of instances to the space
of algorithms, to maximize some performance measure perf(S(x), x). Rice offered few
concrete techniques, but all subsequent work on algorithm selection can be seen as
falling into his framework. We explain our choice of methodology by relating it to
other approaches for algorithm selection that have been proposed in the literature.

Parallel Execution One tempting alternative to portfolios that select a singlealgo-
rithm is the parallel execution of all available algorithms. While it is often true that
additional processors are readily available, it is also often the case that these processors
can be put to uses besides running different algorithms in parallel, such as paralleliz-
ing a single search algorithm or solving multiple problem instances at the same time.
Meaningful comparisons of running time between parallel and non-parallel portfolios
require that computational resources be fixed, with parallel execution modelled as ideal
(no-overhead) task swapping on a single processor. Lett∗(x) be the time it takes to
run the algorithm that is fastest on instancex, and letn be the number of algorithms.
A portfolio that executes all algorithms in parallel on instancex will always take time
nt∗(x). On the data from our case study such parallel execution has roughly the same
average runtime as winner-take-all algorithm selection (we have three algorithms and
CPLEX is three times slower than the optimal portfolio), while our techniques do much
better, achieving running times of roughly1.05t∗(x).

In some domains, parallel executioncanbe a very effective technique. Gomes and
Selman [3] proposed such an approach for incomplete SAT algorithms, using the term
portfolio to describe a set of algorithms run in parallel. In this domain runtime depends
heavily on variables such as random seed, making runtime difficult to predict; thus
parallel execution is likely to outperform a portfolio thatchooses a single algorithm.

In such cases it is possible to extend our methodology to allow for parallel execution.
We can add one or more new algorithms to our portfolio, with algorithm i standing as
a placeholder for the parallel execution ofki of the original algorithms; in the training
datai would be given a running time ofki times the minimum of its constituents. This
approach would allow portfolios to choose to task-swap setsof algorithms in parts of the
feature space where the minimums of individual algorithms’runtimes are much smaller
than their means, but to choose single algorithms in other parts of the feature space.
Our use of the term “portfolio” may thus be seen as an extension of the term coined by
Gomes and Selman, referring to a set of algorithms and a strategy for selecting a subset
(perhaps one) for parallel execution.

Classification Since algorithm selection is fundamentally discriminative—it entails
choosing the algorithm that will exhibit minimal runtime—classification is an obvious
approach to consider. Any standard classification algorithm (e.g., a decision tree) could
be used to learn which algorithm to choose given features of the instance and labelled
training examples. The problem is that such classification algorithms use the wrong er-
ror metric: they penalize misclassifications equally regardless of their cost. We want to
minimize a portfolio’s average runtime, not its accuracy inchoosing the optimal algo-
rithm. Thus we should penalize misclassifications more whenthe difference between
the runtimes of the chosen and fastest algorithms is large than when it is small. This is
just what happens when our decision criterion is to select the smallest prediction among
a set of regression models that were fit to minimize root mean squared error.

A second classification approach entails dividing running times into two or more
bins, predicting the bin that contains the algorithm’s runtime, and then choosing the
best algorithm. For example, Horvitz et. al. [6, 14] used classification to predict runtime
of CSP and SAT solvers with inherently high runtime variance(heavy tails). Despite
its similarity to our portfolio methodology, this approachsuffers from the use of a clas-
sification algorithm to predict runtime. First, the learning algorithm does not use an
error function that penalizes large misclassifications (off by more than one bin) more
heavily than small misclassifications (off by one bin). Second, this approach is unable
to discriminate between algorithms when multiple predictions fall into the same bin.
Finally, since runtime is a continuous variable, class boundaries are artificial. Instances
with runtimes lying very close to a boundary are likely to be misclassified even by a
very accurate model, making accurate models harder to learn.

Markov Decision ProcessesPerhaps most related to our paper is work by Lagoudakis
and Littman ([7, 8]). They worked within the MDP framework, and concentrated on
recursive algorithms (e.g. sorting, SAT), sequentially solving the algorithm selection
problem on each subproblem. This work demonstrates encouraging results; however,
its generality is limited by several factors. First, the useof algorithm selection at each
stage of a recursive algorithm can require extensive recoding, and may simply be impos-
sible with ‘black-box’ commercial or proprietary algorithms, which are often among the
most competitive. Second, solving the algorithm selectionproblem recursively requires
that the value functions be very inexpensive to compute; in our case study we found that
more computationally expensive features were required foraccurate predictions of run-

time. Finally, these techniques can be undermined by non-Markovian algorithms, such
as those using clause learning, taboo lists or other forms ofdynamic programming.

Of course, our approach can also be described in an MDP framework, with each
action (choice of algorithm) leading to a terminal state, and reward equal to the negative
of runtime. Optimal policy selection is trivial given a goodvalue function; thus the
key to success is good value estimation. Our approach emphasizes making the value
functions—that is, models of runtime—explicit, since this provides the best defense
against good but fragile policies. We do not describe our models as MDPs because the
framework is redundant in the absence of sequential decision-making.

Different Regression Approaches Lobjois and Lemâıtre [12] select among several
simple branch-and-bound algorithms based on a prediction of running time. This work
is similar in spirit to our own; however, their prediction isbased on a single feature and
works only on a particular class of branch-and-bound algorithms.

Since our goal is to discriminate among algorithms, it mightseem more appropriate
to learn models of pairwise differences between algorithm runtimes, rather than models
of absolute runtimes. For linear regression (and the forms of nonlinear regression used
in our work) it is easy to show that the two approaches are mathematically equivalent.

5.2 Inducing Hard Distributions

It is widely recognized that the choice of test distributionis important for algorithm
development. In the absence of general techniques for generating instances that are both
realistic and hard, the development of new distributions has usually been performed
manually. An excellent example of such work is Selman et. al.([18]), which describes
a method of generating SAT instances near the phase transition threshold, which are
known to be hard for most SAT solvers.

6 Conclusions

Just as boosting allows weak classifiers to work together effectively, algorithms can be
combined into portfolios to build a whole greater than the sum of its parts. First, we
have described how to build such portfolios. Our techniquescan be elaborated to re-
duce the cost of computing features, to reduce the time spentgathering training data
by capping runs, and to strike the right balance between the penalties for mispredict-
ing easy and hard instances. Second, we argued that algorithm design should focus on
problem instances upon which a portfolio of existing algorithms spends most of its
time. We have provided techniques for inducing such distributions, and also for refining
distributions to emphasize instances that have high scoreson a given ‘realism’ func-
tion. We performed a case study on combinatorial auctions, and showed that a portfolio
composed of CPLEX and two older—and generallymuchslower—algorithms outper-
formed CPLEX alone by about a factor of 3. In future work, we aim to perform case
studies of our methodology on other hard problems; our first effort in this direction is a
portfolio of 10 algorithms which we have entered in the 2003 SAT competition.

Acknowledgments

Thanks to Ryan Porter, Carla Gomes and Bart Selman for helpful discussions. This
work was supported by DARPA grant F30602-00-2-0598, the Intelligent Information
Systems Institute at Cornell, and a Stanford Graduate Fellowship.

References

1. A. Doucet, N. de Freitas, and N. Gordon(ed.).Sequential Monte Carlo Methods in Practice.
Springer-Verlag, 2001.

2. Y. Fujishima, K. Leyton-Brown, and Y. Shoham. Taming the computational complexity of
combinatorial auctions: Optimal and approximate approaches. InIJCAI, 1999.

3. C. Gomes and B. Selman. Algorithm portfolios.Artificial Intelligence, 126(1-2):43–62,
2001.

4. R. Gonen and D. Lehmann. Optimal solutions for multi-unit combinatorial auctions: Branch
and bound heuristics. InACM Conference on Electronic Commerce, 2000.

5. R. Gonen and D. Lehmann. Linear programming helps solving large multi-unit combi-
natorial auctions. Technical Report TR-2001-8, Leibniz Center for Research in Computer
Science, April 2001.

6. E. Horvitz, Y. Ruan, C. Gomes, H. Kautz, B. Selman, and M. Chickering. A Bayesian
approach to tackling hard computational problems. InUAI, 2001.

7. M. Lagoudakis and M. Littman. Algorithm selection using reinforcementlearning. InICML,
2000.

8. M. Lagoudakis and M. Littman. Learning to select branching rules in theDPLL procedure
for satisfiability. InLICS/SAT, 2001.

9. K. Leyton-Brown, E. Nudelman, G. Andrew, J. McFadden, and Y.Shoham. A portfolio
approach to algorithm selection. InIJCAI, 2003.

10. K. Leyton-Brown, E. Nudelman, and Y. Shoham. Learning the empirical hardness of opti-
mization problems: The case of combinatorial auctions. InCP, 2002.

11. K. Leyton-Brown, M. Pearson, and Y. Shoham. Towards a universal test suite for combina-
torial auction algorithms. InACM EC, 2000.

12. L. Lobjois and M. Lemâıtre. Branch and bound algorithm selection by performance predic-
tion. In AAAI, 1998.

13. J. R. Rice. The algorithm selection problem.Advances in Computers, 15:65–118, 1976.
14. Y. Ruan, E. Horvitz, and H. Kautz. Restart policies with dependenceamong runs: A dynamic

programming approach. InCP, 2002.
15. T. Sandholm. An algorithm for optimal winner determination in combinatorial auctions. In

IJCAI, 1999.
16. T. Sandholm, S. Suri, A. Gilpin, and D. Levine. CABOB: A fast optimal algorithm for

combinatorial auctions. InIJCAI, 2001.
17. R. Schapire. The strength of weak learnability.Machine Learning, 5:197–227, 1990.
18. B. Selman, D. G. Mitchell, and H. J. Levesque. Generating hard satisfiability problems.

Artificial Intelligence, 81(1-2):17–29, 1996.

