
On the Complexity of Schedule Control Problems for
Knockout Tournaments ∗

Thuc Vu, Alon Altman, Yoav Shoham
Computer Science Department

Stanford University, California, 94305
{thucvu,epsalon,shoham}@stanford.edu

ABSTRACT
Knockout tournaments constitute a common format of sporting events,
and also model a specific type of election scheme (namely, sequen-
tial pairwise elimination election). In such tournaments the de-
signer controls the shape of the tournament (a binary tree) and the
seeding of the players (their assignment to the tree leaves). In this
paper we investigate the computational complexity of tournament
schedule control, i.e., designing a tournament that maximizes the
winning probability a target player. We start with a generic proba-
bilistic model consisting of a matrix of pairwise winning probabili-
ties, and then investigate the problem under two types of constraint:
constraints on the probability matrix, and constraints on the allow-
able tournament structure. While the complexity of the general
problem is as yet unknown, these various constraints – all naturally
occurring in practice – serve to push to the problem to one side or
the other: easy (polynomial) or hard (NP-complete).

Categories and Subject Descriptors
H.2 [Computing Methodologies]: Artificial Intelligence

General Terms
Tournament Design

Keywords
Tournament Design, Voting Theory, Election Control, Complexity

1. INTRODUCTION
Tournaments1 constitute a very common social institution. Their

best known use is in sporting events, which attract millions of view-
ers and billions of dollars annually. But tournaments also play a key
role in other social and commercial settings, ranging from the em-
ployment interview process to patent races and rent-seeking con-
tests (see [12, 15, 10] for details).

Tournaments constitute a strict subclass of all competition for-
mats, and yet they still allow for many different variations. All

∗This work is supported by NSF grants IIS-0205633-001 and SES-
0527650.
1Here we use the term with the commonsense meaning, instead of
indicating directed tournament graphs.

Cite as: On the Complexity of Schedule Control Problems for Knock-
out Tournaments, Thuc Vu, Alon Altman, Yoav Shoham,Proc. of 8th
Int. Conf. on Autonomous Agents and Multiagent Systems (AA-
MAS 2009), Decker, Sichman, Sierra and Castelfranchi (eds.), May, 10–
15, 2009, Budapest, Hungary, pp. XXX-XXX.
Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

tournaments consist ofstagesduring which severalmatchestake
place, matches whose outcomes determine the set of matches in the
next stage, and so on, until some final outcome of the tournament
is reached. But tournaments vary in how many stages take place,
which matches are played in each stage, and how the outcome is
determined.

In this paper we focus on a narrower class of tournaments:knock-
out tournaments. In this very familiar format the players are placed
at the leaf nodes of a binary tree. Players at sibling nodes compete
against each other in a pairwise match, and the winner of the match
moves up the tree. The player who reaches the root node is the
winner of the tournament. We show an example in Figure 1.

While our motivation is anchored in the tournament world, the
specific format of knockout tournaments is isomorphic to a partic-
ular class of elections studied within voting theory, namely sequen-
tial elimination voting with pairwise comparison [3, 9]. In such
elections the players are the candidates, and the pairwise match-
ing represents a pairwise election rather than a sporting match, but
otherwise the process is identical.

What makes the connection to elimination election particularly
striking is the problem we tackle in this paper, namely schedule
control. In knockout tournaments, as in sequential elimination vot-
ing with pairwise comparison, the designer has limited control: The
shape of the tournament/voting tree, and the assignment of play-
ers/candidates to its leaves. This is called thescheduleof the tour-
nament or the agenda of the election. The rest is outside the de-
signer’s control. The question we tackle is how a designer can
best exercise this control in order to optimize a certain quantity.
In this paper we focus on maximizing the winning probability of
a given target player (this is usually viewed in a negative connota-
tion, namely as biasing the tournament or rigging the election; of
course by studying the difficulty of such manipulation we do not
condone it, and the results can be used to prevent it rather than en-
able it). This is a natural question in the context of voting; there are
several others in the context of tournaments, but they lie outside
the scope of this paper. Thus, while in general the theory of tour-
naments is quite different from the theory of voting, they coincide
when we speak about schedule control in knockout tournaments.
This has not always been recognized, and specifically some liter-
ature on knockout tournaments makes no reference to voting, but
we will appeal to the literature of both camps. For coherence, how-
ever, we will continue to use the sports/tournament terminology in
the remainder of this paper.

Our problem may at first seem narrow – a very restricted class of
tournaments, and a very specific design objective. But this seem-
ingly simple question turns out to be surprisingly subtle and some
of the answers are counter-intuitive. To begin with, note that the
number of possible schedules grows extremely quickly with the

1 2

1

3 4

4

5 6

5

4

1

1 2

3 4 5 6

Figure 1: An example of a tournament structure for 6 players and one possible outcome

number of players, e.g.,O(n!
2n−1) when the possible schedule is

limited to be of balanced tournament only. This means that even for
a small number of players it can be hard to answer the question. For
n = 2, 4, 8, 16, 32, the numbers of possible, non-duplicate sched-
ules are1, 3, 315, 638 × 106, 122 × 1024 respectively. But the
asymptotic analysis is also not straightforward, since it is sensitive
to several variations of the problem modeling. Our basic model,
which appears in both the tournament literature and the voting lit-
erature, is that of a winning-probability matrix, the(i, j) entry of
which represents the probability that playeri wins over playerj
in a match between them (see [6, 4] for example). With no fur-
ther constraints, it is unknown whether there exists an efficient al-
gorithm to find the optimal structure. However, when we place
certain natural constraints on the structure of the tournament or
the winning-probability matrix, the problem becomes either prov-
ably easy (namely, polynomial) or provably hard (specifically, NP-
complete). In this paper, we discuss these settings and analyze the
complexity of the problem in each setting.

The rest of the paper is organized as follows. We first present
the general model for tournament design in Section 2. Then in Sec-
tion 3 we summarize the existing results from the literature. We
then describe in Section 4 and 5 different constraints that can be
placed on the model and our results for these settings. We sum-
marize the results in Section 6 and suggest possible directions for
future work.

2. THE GENERAL MODEL AND PROBLEM
We start out with the most general model of a knockout tour-

nament. In this setting, there is no constraint on the structure of
the tournament, as long as it only allows pairwise matches between
players. We also assume that for any pairwise match, the probabil-
ity of one player winning against the other is known. This prob-
ability can be obtained from past statistics or from some learning
models. Here we do not place any constraints on the probabili-
ties either, besides the fundamental properties. Thus there might be
no transitivity between the winning probabilities, e.g., playeri has
more than50% chance of beating playerj, playerj has more than
50% chance of beating playerk, but playerk also has more than
50% chance of beating playeri.

We define a knockout tournament as the following:

Definition 1. (General Knockout Tournament) Given a setN
of players and a matrixP such thatPij denotes the probability that
playeri will win against playerj in a pairwise elimination match
and0 ≤ Pij = 1 − Pji ≤ 1 (∀i, j ∈ N), a knockout tournament
KTN = (T, S) is defined by:

• A tournament structureT which is a binary tree with|N | leaf

nodes

• A seedingS which is a one-to-one mapping between the
players inN and the leaf nodes ofT

We writeKTN asKT when the context is clear.

To carry out the tournament, each pair of players that are as-
signed to sibling leaf nodes with the same parent compete against
each other in a pairwise elimination match. The winner of the
match then ”moves up" the tree and then competes against the win-
ner of the other branch. The player who reaches the root of the
tournament tree is the winner of the tournament.

Intuitively the probability of a player winning the tournament
depends on the probability that it will face a certain opponent and
win against that opponent. We formally define this quantity below:

Definition 2. (Probability of Winning a Tournament) Given a
setN of players, a winning probability matrixP , and a knockout
tournamentKTN = (T, S), the probability of playerk winning the
tournamentKTN , denotedq(k, KTN) is defined by the following
recursive formula:

1. If N = {j}, thenq(k, KTN) =

�
1 if k = j
0 if k 6= j

2. If |N | ≥ 2, let KTN1 = (T1, S1) andKTN2 = (T2, S2) be
the two sub-tournaments ofKT such thatT1 andT2 are the two
subtrees connected to the root node ofT , andN1 andN2 are the
set of players assigned to the leaf nodes ofT1 andT2 by S1 andS2

respectively. Ifk ∈ N1 then

q(k, KTN) =
X

i∈N2

q(k, KTN1)× q(i, KTN2)× Pki

and symmetrically fork ∈ N2.

This recursive formula also gives us an efficient way to calculate
q(k, KT):

PROPOSITION 1. Given a setN of players, a winning proba-
bility matrix P , and a knockout tournamentKTN = (T, S), the
complexity of calculatingq(k, KT) for a givenk ∈ N is O(|N |2).

PROOF. First note that the number of operations is linear in the
number of pairs(i, j) with i, j ∈ N we consider. Moreover, for a
giveni, j ∈ N we match upi andj only once. Thus the complexity
is O(|N |2).

Given a set of playersN and the winning probabilitiesP be-
tween the players, the goal of the tournament designer is to come up
with the tournament structureT and the seedingS that will max-
imize the probability of a given playerk ∈ N winning the tour-
nament. This optimization problem has a decision version which

k

KT
1 KT

2

k
KT

1

KT
2

KT*
KT

Figure 2: Biased knockout tournamentKT ∗ that maximizes the winning chance ofk and a general tournamentKT

asks if there existT andS such that the probability ofk winning
the tournament is greater than a given valueθ.

The first intuition for the optimization problem is that the later
any player plays in the tournament, the better chance she has of
winning the tournament. We state and prove this intuition in the
following proposition.

PROPOSITION 2. Given a set of playersN and the winning
probability matrixP , the tournament structure that maximizes the
probability of playerk ∈ N has the biased structure asKT ∗ in
Figure 2 in whichk has to play only the final match.

PROOF. We prove this by induction.
Base case:When|N | = 2, there is only one possible binary tree

with 2 leaf nodes.
Inductive step:Assume that the theorem holds forN with |N | ≤

n− 1. For any givenk ∈ N , we will show that it also holds forN
with |N | = n by converting any tournament structure that does not
have a biased structure toKT ∗ as in Figure 2 such that inKT ∗, k
has at least the same chance of winning.

Let’s consider any given tournament structureKT that does not
have the biased structure. LetKT1 andKT ′2 be the two disjoint
sub-tournaments that make upKT , and letN1, N ′

2 be the set of
players assigned toKT1, KT ′2 respectively. Assume wlog thatk ∈
N ′

2. Since|N ′
2| < |N |, the chance ofk winning the tournament is

maximized whenKT ′2 has the biased structure. Therefore we just
need to compare the chance ofk winning inKT with its chance in
KT ∗ as shown in Figure 2:

q(k, KT) =
X

i∈N′2\{k}
[Pki · q(i, KT2)]×

X
j∈N1

[Pkj · q(j, KT1)]

q(k, KT ∗) =
X

j∈N1,i∈N′2\{k}
Pki · q(i, KT2) · Pij · q(j, KT1)

+
X

j∈N1,i∈N′2\{k}
Pkj · q(j, KT1) · Pji · q(i, KT2)

q(k, KT ∗)− q(k, KT) =
X

j∈N1,i∈N′2\{k}
[q(j, KT1) · q(i, KT2)·

(PkjPji + PkiPij − PkiPkj)]

Pij + Pji = 1 ⇒
PkjPji + PkiPij ≥ min{Pki, Pkj} ≥ PkiPkj

Therefore we haveq(k, KT ∗) ≥ q(k, KT).

Here we show that the biased structure in Figure 2 is optimal
over any tournament structure, as opposed to a similar result in [4]
that is only applicable for a very specific linear structure. Proposi-
tion 2 gives us the shape of the optimal tournament structure and
lets us reduce the original problem to a smaller one. Yet it still re-
mains an open question whether there exists an efficient algorithm
to find the exact optimal schedule. Nevertheless, by placing certain
natural constraints on the structures of the tournament or the win-
ning probabilities of the players, we manage to get a better analysis
of the problem. In the next section we will introduce the common
constraints considered in the literature and the existing results in the
settings with these constraints. We will also discuss the limitations
of these results.

3. RELATED WORK
In the most common settings in the tournament design literature

(see, e.g., [6, 1, 13]), the players are assumed to have intrinsic abil-
ities and ranked based on these abilities. The abilities are unknown
but the ranking is available to the designer. In this setting, the prob-
ability of one player winning against another is also known and
is monotonic with regard to the rankings of the players, i.e., any
player will have a higher chance of winning against a lower ranked
player than winning against a higher ranked player. Besides this
monotonicity constraint, the structure of the tournament is also re-
stricted to be balanced binary tree. Most of the works in this setting
focus on maximizing the winning probability of the highest ranked
player. Yet the existing results are limited to very small cases ofn,
the number of players, such asn = 4 or n = 8. In our work, we
generalize the objective function to maximizing the winning proba-
bility of any given player, not just the highest ranked one, and focus
on asymptotic results instead.

Tournament design problems are also addressed in the context of
voting. In [8], the candidates are competing in an election based on
sequential majority comparisons along a binary voting tree. In each
comparison, the candidate with more votes wins and moves on; the
candidate with less votes is eliminated. Essentially, the candidates
are competing in a knockout tournament in which the result of each
match is deterministic. The probability of winning a match is either
0 or 1. In this setting, without any constraints on the structure of the
voting tree, there is a polynomial time algorithm to decide whether
there exists a voting tree that will allow a particular candidate to
win the election. When the voting tree has to be a balanced binary
tree, a modified version of the problem is NP-complete. In this
version, there is a weight associated with each match between a
pair of players, and the question becomes how to find the voting

tree with the minimum weight that allows the target candidate to
win the election.

The problem of finding the right voting tree (referred to as the
control problem) is also addressed in [4] but with probabilistic com-
parison results instead. Here, the objective is finding a voting tree
that allows a candidate to win the election with probability at least
a certain value. Within this setting, the authors show that another
modified version of the control problem is NP-complete. Besides
the balanced tree constraint, the authors require the outcomes of
the election to be “fair", i.e., the stronger candidate always wins
each pairwise comparison. We provide a much more general result
in our paper by not putting any restriction on the outcomes of the
matches. They are determined solely by the winning probabilities
between the players.

The computational aspects of other methods of controlling an
election are also considered in [2, 5]. Here, the organizer of the
election is trying to change the result of the election through con-
trols (such as adding or deleting) of the voters or candidates. It has
been shown that for certain voting protocols, some methods of con-
trol are computationally hard to perform. Nevertheless, our focus
is not on using computational hardness to prevent manipulation but
rather on providing an analysis on the complexities of tournament
design problems.

4. A CONSTRAINT ON THE STRUCTURE
OF THE TOURNAMENT

In Section 2, we have shown that the optimal general tournament
structure is very unbalanced with the target player on one side and
the rest of the players on the other side of the tree. One might say
that this structure is unfair since the target player will have to com-
pete only in the final match. One particular way to enforce fairness
is to require the tournament structure to be a balanced binary tree
(for simplicity, we assume that the number of players is a power of
2). This way, every player has to play the same number of matches
in order to win the tournament.

Definition 3. (Balanced Knockout Tournament) Given a set
N of players such that|N | = 2m, a knockout tournamentKT =
(T, S) is called balanced whenT is a balanced binary tree.

Due to the attractiveness of this fairness between players, the
balanced knockout tournament format has been widely addressed
in the literature and is in fact the most commonly used format in
practice. In this setting, since the structure of the tournament is
fixed, the remaining control of the tournament designer is in the
seeding of the tournament, i.e., the assignment of players to the
leaf nodes of the tree. Thus our previous problem is reduced to
finding the seeding that will maximize the winning probability of
a particular player. Note that as we have mentioned in Section 1,
even in this seemingly simple format, the number of different seed-
ings to consider grows extremely fast with the number of players.
Capturing this intuition, we have the following hardness result for
the decision version of this problem:

THEOREM 1. Given a set of playersN and a winning proba-
bility matrix P , it is NP-complete to decide whether there exists a
balanced knockout tournamentKT such thatq(k, KT) ≥ δ for a
givenδ andk ∈ N .

This theorem follows from Theorem 3. Therefore we will defer
the discussion of the proof of this theorem to the next section. Since
the decision version is NP-complete, it follows that optimization
version of the problem is NP-hard. Note that the same result holds

for any number of players (e.g., even when|N | is not a power of 2).
In this case, when there is an odd number of players at any round,
we allow the tournament designer to let any player advance to the
next round without competing. This allows certain bias, e.g., if the
number of players is2m + 1, there is an odd number of players at
every round except the final, and the target player can actually ad-
vance straight to the final match. Nevertheless, it is still NP-hard to
find the optimal structure for the target player. This can be proved
by using a similar reduction in which we make sure that the target
player is in fact the only plausible choice for the designer to ad-
vance to the next round when there is an odd number of remaining
players.

5. CONSTRAINTS ON PLAYER MODEL
Besides the balance constraint on the structure of the tournament,

we also address different constraints on the winning probabilities
between the players. One such constraint is on the possible values
that the probabilities can take, e.g., the deterministic constraint.
Another constraint is a certain overall structure that the winning
probability matrix need to satisfy, e.g., the monotonicity constraint.
We will discuss both types of constraints below.

5.1 Win-Lose Match Results
The first constraint we consider is to require the result of each

match to be deterministic, i.e., winning probabilities can only be
either 0 or 1. As mentioned in Section 3, a knockout tournament in
this setting is analogous to a sequential pairwise elimination elec-
tion. Given a tournament structure, a player in the tournament will
either win the tournament for certain (winning with probability 1)
or will lose for certain (winning with probability 0). Note that the
winning probability matrix can be any arbitrary binary matrix.

When there is no constraint on the structure of the tournament,
as shown in [8], there exists a polynomial time algorithm to find
the tournament structure that allows a target playerk to win the
tournament or decide that it is impossible fork to win. When the
tournament has to be balanced, it is still an open problem.

We shall now discuss another problem model that we believe
will be helpful for the understanding of the proof of Theorem 3.
In this model, there is no constraint to the tournament tree, except
that each player has to start from a pre-specified round. In other
words, the tournament can take the shape of any binary tree, but
each player has to start at certain depth of the tree.

Definition 4. (Knockout Tournament with Round Placements)
Given a setN of players and a winning probability matrixP , a
vectorR ∈ N|N|, if there exists a knockout tournamentKT such
that inKT , playeri starts from roundRi (the leaf nodes with the
maximum depth in the tree are considered to be at round 1), then
R is called afeasibleround placement and such tournamentKT
is called a knockout tournament with round placementR. When
there is an odd number of players at any given round, one player
playing at that round can automatically advance to the next round.

Note that when all players have round placement 1, the tourna-
ment is balanced. We have the following hardness result:

THEOREM 2. Given a set of playersN , the winning probabil-
ity matrix P such that∀i 6= j ∈ N , Pij ∈ {0, 1}, and a feasible
round placementR, it is NP-complete to decide whether there ex-
ists a tournament structureKT with round placementR such that
a target playerk ∈ N will win the tournament.

PROOF. It is easy to show that the problem is in NP. We will
show the problem is NP-complete using a reduction from the Ver-

tex Cover problem.

Vertex Cover: Given a graphG = {V, E} and an integerk, is
there a subsetC ∈ V such that|C| ≤ k andC coversE?

Reduction method:
We construct a tournamentKT = (T, S) with a special playero
and a round placementR such thato wins KT if and only if there
exists a vertex cover of size at mostk.

KT contains the following players2:

1. Objective player:o which starts at round 1.

2. Vertex players:{vi ∈ V } which start at round 1. There are
n = |V | such players.

3. Edge players:{ei ∈ E}. There arem = |E| such players.
ei starts at round(n− k + i− 1).

4. Filler players: For each roundr such that(n − k + m) >
r ≥ (n− k), there is one filler playerfr that starts at round
r. Thus there are a total ofm of them. They are meant for
playero.

5. Holder players: For each roundr, there are a set of holder
playershr

i (i.e., multiple copies ofhr) that start at roundr.
These players are meant for the vertex players. The number
of copies ofhr depends on the value ofr:
- If 1 ≤ r ≤ (n− k), there are(n− r) copies
- If (n− k) < r ≤ (n− k + m), there are(k − 1) copies
- If (n − k + m) < r ≤ (n + m), there are(m + n − r)
copies

The winning probabilities between the players are assigned as in
Table 5.1. In a nutshell:

1. o only wins againstvi andf with probability 1 (always wins)
and loses against all others with probability 1 (always loses).

2. vi always wins againsthr, ej that it covers, andvi′ with
i′ > i. It always loses against all other players.

3. ej always wins againsthr, f , ej′ with j′ > j.

4. Between twofr players, the winner can be either one.

5. Between twohr players, the winner can be either one.

The reduction is polynomial since the numbers of players in the
tournament is polynomial.

We first need to show how to construct a scheduleKT that al-
lowso to win the tournament if there exists a vertex coverC of size
at mostk. The desiredKT is composed of three phases:

Phase 1: Phase 1 is the first(n − k) rounds. In this phase,
we eliminate all vertex players that are not inC while keeping the
remaining vertex players, ando. At each roundr, match upo with
v′ /∈ C and let each of the(n− r) holder playershr match up with
the remainingvi. Notice that after each round, one vertex player
gets eliminated and there is one lesshr. After (n−k) rounds, there
arek vertex players left corresponding to the vertices inC.

Phase 2:Phase 2 is the followingm rounds. In this phase, we
eliminate all edge players. For each round, we match upo with
fr. At each roundr, there will be one edge playere starting at that

2We overload some notations here but the given the context, it
should be clear

round. We matche againstvi ∈ C that covers it. For the remaining
vertex players, we match them up with(k − 1) holder playershr.
After m rounds, all of the edge players will be eliminated (since the
k vertex players left form a vertex cover). The remaining players at
the end of this phase arek vertex players ando.

Phase 3: Phase 3 is the finalk rounds after Phase 2. In this
phase, we eliminate the remaining vertex players. At each round,
the number of new holder players starting at that round is one less
than the number of remaining vertex players. We match up the
vertex players withhr, ando with the remainingv. At the end of
this phase, onlyo remains.

For the other direction, we need to prove thato can win the tour-
nament only if there is a vertex coverC of sizek. First note that
during Phase 1, foro not to get eliminated, it has to play against a
vertex playerv. Thus after the first(n−k) rounds, there are at most
k vertex players remaining (there can be less if two vertex players
play against each other).

During Phase 2, the only way that an edge playere can be elimi-
nated is to play againstv that covers it or play against another edge
playere′ which started at an earlier round. Ife is eliminated by
e′, there must be eitherhr, v, or fr that was eliminated earlier by
an edge playere′′ (which can possibly bee′). Since there is only
(k − 1) holder players at each round, ifhr was eliminated bye′′,
two vertex players must have played against each other and one of
them must have been eliminated. Iffr was eliminated bye′′, at that
roundr, o must have played against somev to advance. Thus for
all cases, there is at least onev that got eliminated. Note that in this
phase, at any round, there are only(k +1) new players. Therefore,
at the end of this phase, there are exactly(k+1) players remaining
including o. If all edge players get eliminated by vertex players,
there arek vertex players remaining. If there is at least onee which
did not get eliminated or got eliminated by another edge player but
not a vertex player, there are less thank vertex players remaining.

Now during Phase 3, foro to win the tournament,o can only
play against a vertex player. Thus the number of vertex players is
reduced each round by 1. Moreover, since there are(k − 1) holder
playershr starting at the first round of the phase, and one less for
each round after that, if there are less thank vertex players at the
beginning of Phase 3, there will be at least one non-vertex player
remaining. If that is the case, at the last round of Phase 3, there
must be at least one edge or holder player remaining ando will
lose the tournament.

Therefore, foro to win the tournament, there must bek vertex
players at the beginning of Phase 3. This implies all edge players
must have been eliminated by vertex players during Phase 2. So
each edge player must be covered by at least one of the remaining
vertex players after Phase 1. Since there are at mostk of them after
Phase 1, these remaining vertex players form a vertex cover of size
at mostk.

After placing this constraint on the structure of the tournament
tree, the tournament design problem has changed from easy to hard.
This gives an indication that the design problem for balanced knock-
out tournament within this setting is probably also hard.

5.2 Win-Lose-Tie Match Results
When the match results are deterministic, it is an open problem

whether there exists an efficient algorithm to find the optimal bal-
anced knockout tournament for a given player. Surprisingly, when
we allow there to be a tie between two players (each has equal
chance of winning), the problem becomes provably hard.

THEOREM 3. Given a set of playersN , a winning probability
matrix P such thatPij ∈ {0, 1, 0.5}, it is NP-complete to decide

vj ej fr hr
i

o 1 0 1 0
vi 1 if i ≤ j, 0 otherwise 1 if vi coversej , 0 otherwise 0 1
ei - 1 if i ≤ j, 0 otherwise 1 1
fr - - arbitrary 1
hr

i - - - arbitrary

Table 1: The winning probabilities of row players against column players inKT

whether there exists a balanced knockout tournamentKT such that
q(k, KT) ≥ δ for a givenδ andk ∈ N .

The proof of Theorem 3 is similar to the proof of Theorem 2 with
two modifications to the reduction:
1. We need to construct some gadgets that simulate the round place-
ments, i.e., if playeri starts from roundr, playeri will not be elim-
inated until roundr. In order to achieve this, we will introduce
(2r − 1) filler players that only playeri can beat. This will keep
playeri busy until at least roundr
2. We need to make sure that the round placement for any player
is at mostO(log(n)) with n equal to the size of the Vertex Cover
Problem so that the size of the tournament is still polynomial.
The details of the proof for this theorem is included in the appendix.

Since Win-Lose-Tie match results is a special case of general
winning probabilities, we can reduce the problem of finding the op-
timal balanced knockout tournament with Win-Lose-Tie match re-
sults to the problem of finding the optimal general balanced knock-
out tournament. This constitutes the proof for Theorem 1.

When there is no constraint on the structure of the tournament,
there exists a polynomial time algorithm to either find a schedule
that allows the target player to win with probability 1 or decide that
such a schedule does not exist. This algorithm is a modification
the algorithm introduced in [8] to compute possible winners. In the
modified version, when there is a tie between 2 players, we remove
all the edges between them in the tournament graph. We will then
proceed to finding all the winning paths from the target player to
other players in the tournament. If there is a winning path to all
other players, there exists a schedule to make the target player win,
and it is the binary tree formed by combining the winning paths.

5.3 Monotonic Winning Probabilities
Another natural constraint is to require a certain overall struc-

ture of the winning probability matrixP . One of the most common
models in the literature is the monotonic model (see for example [6,
11, 7, 14]). In this model, the players are ranked from 1 ton in
descending order of unknown intrinsic abilities. The tournament
designer only know the rankings and the winning probabilities be-
tween the players, which are correlated to the intrinsic abilities.

Definition 5. (Knockout Tournament with Monotonic Win-
ning Probabilities) A knockout tournamentKT = {N, T, S, P}
has monotonic winning probabilities when the winning probability
matrixP satisfies the following constraints:

1. Pij + Pji = 1

2. Pij ≥ Pji ∀(i, j) : i ≤ j

3. Pij ≤ Pi(j+1) ∀(i, j)

As in other settings, we can place the balance constraint on the
structure of the tournament. However, similarly to the case of deter-
ministic match results, when we require the tournament to be bal-
anced, the complexity of finding the optimal tournament becomes

unknown. Yet, when we relax this condition to allow small vi-
olation, we can obtain certain hardness result. We call the new
conditionε-monotonicity.

Definition 6. (Knockout Tournament with ε-Monotonic Win-
ning Probabilities) A winning probability matrixP is ε-monotonic
with ε > 0 whenP satisfies the following constraints:

1. Pij + Pji = 1

2. Pij ≥ Pji ∀(i, j) : i ≤ j

3. Pij ≤ Pij′ + ε ∀(i, j, j′) : j′ > j

As ε goes to 0, the winning probability matrixP will gets closer
to being monotonic. Note that we only relax the second require-
ment of monotonicity. In this setting, the problem of finding the
optimal balanced structure is provably hard:

THEOREM 4. Given a set of playersN , an ε-monotonic win-
ning probability matrixP with ε > 0, it is NP-complete to de-
cide if there exists a balanced knockout tournamentKT such that
q(k, KT) ≥ δ for a givenδ andk ∈ N .

The proof for the theorem is included in the appendix.
Here we assumeε andδ have the same precision. Sinceε can

be arbitrarily small, this result suggests that there does not exist an
efficient algorithm to find the optimal balanced tournament for a
target player in the setting with monotonic winning probabilities.

6. CONCLUSION AND FUTURE WORK
In this paper we have investigated the computational aspect of

schedule control for knockout tournaments. We have considered
several modelings of the problem based on different constraints that
can be placed on the structure of the tournament or the model of the
players. In particular, we have shown that when the tournament has
to be balanced, the structure control problem is NP-hard, even when
the match results can only be win, lose, tie, or when the winning
probabilities between the players have to beε-monotonic. We have
also charaterized the optimal structure for general knockout tour-
naments. The results are summarized in Table 2 with new results
in bold face.

When the match results are deterministic, the complexity of the
control problem remains an open problem for future work. Other
directions include finding optimal structure for other objective func-
tions such as fairness or “interestingness" of the tournament, or
considering other constraints on the tournament structure and player
models.

7. REFERENCES
[1] D. R. Appleton. May the best man win?The Statistician,

44(4):529–538, 1995.
[2] J. Bartholdi, C. Tovey, and M. Trick. How hard is it to

control an election?Mathematical and Computer Modeling,
16(8/9):27–40, 1992.

General Prob. Win-Lose-Tie Win-Lose ε-Mono Mono
General Struct Open O(n2) O(n2) [Lang’07] Open Open

Balanced Struct NP-hard NP-hard Open NP-hard Open
Round-placements NP-hard NP-hard NP-hard NP-hard Open

Table 2: Summary of the complexity results

[3] S. J. Brams and P. C. Fishburn. Voting procedures. In K. J.
Arrow, A. K. Sen, and K. Suzumura, editors,Handbook of
Social Choice and Welfare.

[4] N. Hazon, P. E. Dunne, S. Kraus, and M. Wooldridge. How
to rig elections and competitions. InCOMSOC’08, 2008.

[5] E. Hemaspaandra, L. A. Hemaspaandra, and J. Rothe.
Anyone but him: The complexity of precluding an
alternative.Artif. Intell., 171(5-6):255–285, 2007.

[6] J. Horen and R. Riezman. Comparing draws for single
elimination tournaments.Operations Research,
33(2):249–262, mar 1985.

[7] F. K. Hwang. New concepts in seeding knockout
tournaments.The American Mathematical Monthly,
89(4):235–239, apr 1982.

[8] J. Lang, M. S. Pini, F. Rossi, K. B. Venable, and T. Walsh.
Winner determination in sequential majority voting. In
IJCAI, pages 1372–1377, 2007.

[9] J.-F. Laslier.Tournament solutions and majority voting.
Springer, 1997.

[10] G. C. Loury. Market structure and innovation.The Quarterly
Journal of Economics, 93(3):395–410, August 1979.

[11] J. W. Moon and N. J. Pullman. On generalized tournament
matrices.SIAM Review, 12(3):384–399, jul 1970.

[12] S. Rosen. Prizes and incentives in elimination tournaments.
The American Economic Review, 76(4):701–715, sep 1986.

[13] D. Ryvkin. The predictive power of noisy elimination
tournaments. Technical report, The Center for Economic
Research and Graduate Education - Economic Institute,
Prague, Mar. 2005.

[14] A. J. Schwenk. What is the correct way to seed a knockout
tournament?The American Mathematical Monthly,
107(2):140–150, feb 2000.

[15] G. Tullock.Toward a Theory of the Rent-seeking Society.
Texas A&M University Press, 1980.

APPENDIX

PROOF OFTHEOREM 3. Similar to the Proof of Theorem 2, we
show here a reduction from the Vertex Cover problem.

Reduction method:
We construct a tournamentKT = (T, S) with a special playero
such thato winsKT with probability 1 if and only if there exists a
vertex cover of size at mostk.

KT contains the following players:

1. Objective player:o

2. Vertex players:{vi ∈ V } and an extra special vertexv0

which does not cover any edge. If we letn = |V | then there
aren + 1 vertex players.

3. Edge players:{ei ∈ E}. There arem = |E| edge players.

4. Filler players: For each roundr such that0 < r ≤ dlog(n−
k)e, there arek filler playersfr

v,i, i.e., there arek copies of

fr
v . These players are meant to keep at leastk vertex play-

ers advancing to the next round. For each roundr such that
dlog(n − k)e < r ≤ dlog(n− k)e+ dlog(m)e, there arek
filler playersfr

e,i. These are meant for the edge players. We
might refer to both types of filler players asfr

i or simplyfr.

5. Holder players: For playerei, there are2dlog(n−k)e − 1 edge
holder playershl

ei
. These will make sure no edge player will

be eliminated before reaching rounddlog(n − k)e + 1. For
each filler playerfr

i , there are2r − 1 holder playershl
fr

i
that

will make sure no filler player will be eliminated before reach-
ing roundr. There are also

K = 2dlog(n−k)e+dlog(m)e+dlog(k+1)e+1 − 1

special holder playershl
o that will allow playero to advance

to the final match.

The winning probabilities between the players are assigned as in
Table 3. In a nutshell:

1. o only wins againstvi andho with probability 1 (always wins)
and loses against all others with probability 1 (always loses).

2. vi always wins againstfr (bothfr
v andfr

e), ej that it covers,
andvi′ with i′ > i. It always loses against all other players.
The special vertex playerv0 does not win against any edge
player but wins against any other vertex player.

3. ej always wins againsthej , fr, and wins with probability 0.5
against anotherej′ .

4. For the holder players, each of them only loses to the player
it is meant for. For example, edge holder playerhl

ej
only

loses to the edge playerej . Holder players tie when playing
against each other or against an edge player (except for the
edge holder players they are meant for). They always win
againsto and vertex players.

The reduction is polynomial since the number of players in the
tournament isO(K). Without loss of generality, we assume that
the number of total players is a power of 2 because we can always
add moreho players and this will not affect the reduction shown
below. Note that we consider the first round as round 1.

First we need to show how to construct a structureKT that let
o win with probability 1 if there exists a vertex coverC of size at
mostk. The desiredKT is composed of two phases:

Phase 1:Phase 1 is the firstdlog(n− k)e rounds. In this phase,
we eliminate allv /∈ C except the special vertex playerv0 while
keepingo and all edge players. During this phase, for each player
that has corresponding holder players, we will match them together.
This will help each edge playere to get to rounddlog(n−k)e+1,
and each filler playerfr to get to roundr. We also matcho with the
holder playerho to helpo advancing to the final round. At round
1 ≤ r ≤ dlog(n − k)e, if the vertexvi is in C, we match the
vertex playervi with the filler playerfr. Otherwise we match it
with another vertex player that is not inC. At the end of this phase
, there are onlyk + 1 vertex players remaining. One of them is the
special vertex playerv0.

Phase 2:Phase 2 is the followingdlog(m)e+ dlog(k + 1)e+ 1
rounds. In this phase, we eliminate all the edge players by repeat-

vj ej fr′
j hl′

ej
hl′

fr′
j

hl′
o

o 1 0 0 0 0 1
vi 1 if i < j, 1 if vi coversej , 1 0 0 0

0 otherwise 0 otherwise
ei - 0.5 0.5 1 if i = j, 1 1

0.5 otherwise

fr
i - - 0.5 0.5 1 if fr

i = fr′
j , 1

0.5 otherwise
hl

ei
- - - 0.5 0.5 1

hl
fr

i
- - - - 0.5 1

hl
o - - - - - 0.5

Table 3: The winning probabilities of row players against column players inKT

vj ej fr′
j hl′

ej
hl′

fr′
j

hl′
o

o 1 1− ε 1− ε 1− ε 1− ε 1
vi 1 if i < j, 1 if vi coversej , 1 1− ε 1− ε 1− ε

0 ow. (1− ε) ow.
ei - 0.5 1 1 if i = j, 1 1

(1− ε) ow.

fr
i - - 0.5 0.5 1 if fr

i = fr′
j , 1

0.5 otherwise
hl

ei
- - - 0.5 0.5 1

hl
fr

i
- - - - 0.5 1

hl
o - - - - - 0.5

Table 4: The ε-monotonic winning probabilities of row players against column players inKT

edly matching each vertex player with the edge players that it cov-
ers. If there are more edge players than vertex players, we will
match the remaining edge players who are covered by the same
vertex player with each other. If there is any edge player that does
not have a match, we will match it with the edge filler playerfr

e .
Note that there are at mostk edge players that do not have a match.
After each round, at least half of the edge players will be elimi-
nated. Thus after at mostdlog(m)e rounds, all the edge players
will be eliminated. There will be only vertex playersv, o andho

remaining. We just need to match them up untilo is the only player
left sinceo wins againstv andho with probability 1.

For the other direction, we need to prove thato can win the tour-
nament with probability 1 only if there is a vertex coverC of size
k. We need to show that ifo wins with probability 1, after Phase
1, there will be onlyk + 1 vertex players remaining including the
special vertexv0, and during Phase 2, all edge players will be elimi-
nated by one of those remaining vertex players, i.e., no edge players
gets eliminated during phase 1.

First note that foro to win with probability 1, no holder players
exceptho can reach the final. Thus in the firstdlog(n−k)e rounds,
no edge player can get eliminated since there are(2dlog(n−k)e−1)
holder players for each edge player. Also no filler playerfr can get
eliminated before roundr. At roundr such thatr ≤ dlog(n− k)e,
the only way for a vertex player to advance to the next round is
either playing against a filler playerfr or another vertex player.
It cannot advance by playing against an edge player that it covers,
since that would eliminate that edge player too early. It cannot
advance by playing a filler playerfr′ with r′ > r either, since that
would eliminatefr′ too early. Therefore, besidesk vertex players
playing againstfr, at least half of the remaining vertex players will
be eliminated after each round. At the end of rounddlog(n− k)e,

there can be only at mostk +1 vertex players remaining. Note that
since vertex playerv0 wins against any other vertex players, it must
still remain.

For o to win the tournament with probability of 1,o must not
play against any edge players either. Moreover, note that when
two edge players play against each other, each of them has a50%
chance moving on to the next round. Therefore the only way that
an edge player gets eliminated is to play against a vertex player that
covers it. So, each edge player must be covered by at least one of
the remainingk vertex players (sincev0 does not cover any edge).
Consequently the set ofk remaining vertex players forms a vertex
cover of sizek.

PROOF OFTHEOREM 4. To prove this theorem, we show a re-
duction from the Vertex Cover Problem to the tournament design
problem in this setting. The reduction is similar to the proof of
Theorem 3 with the same set of players but with slightly different
winning probabilities (shown in Table 4). Essentially, we convert
the probabilities of a vertex player winning against edge players
that it does not cover from 0 to(1 − ε). Similarly for o, it now ei-
ther wins with probabilities1 as before or with probabilities(1−ε).
The new winning probabilities areε-monotonic with this ordering
of players in descending strengths:o, v0... vn, e1... em, fr, he,
hfr , ho. Note that foro to win the tournament with probability
1, she can only play againstv andho. Thus all players of other
types must be eliminated with probability 1. This allows the proof
of Theorem 3 to hold in this setting.

