On the Complexity of Schedu

le Control Problems for

Knockout Tournaments

Thuc Vu, Alon Altman, Yoav Shoham
Computer Science Department
Stanford University, California, 94305

{thucvu,epsalon,shoham}@stanford.edu

ABSTRACT

Knockout tournaments constitute a common format of sporting even

and also model a specific type of election scheme (namely, sequen
tial pairwise elimination election). In such tournaments the de-

signer controls the shape of the tournament (a binary tree) and the
seeding of the players (their assignment to the tree leaves). In this

paper we investigate the computational complexity of tournament

schedule control, i.e., designing a tournament that maximizes the

winning probability a target player. We start with a generic proba-
bilistic model consisting of a matrix of pairwise winning probabili-

ties, and then investigate the problem under two types of constraint:

constraints on the probability matrix, and constraints on the allow-
able tournament structure. While the complexity of the general
problem is as yet unknown, these various constraints — all naturally
occurring in practice — serve to push to the problem to one side or
the other: easy (polynomial) or hard (NP-complete).

Categories and Subject Descriptors
H.2 [Computing Methodologieg: Artificial Intelligence

General Terms
Tournament Design

Keywords

Tournament Design, Voting Theory, Election Control, Complexity

1. INTRODUCTION

Tournamentsconstitute a very common social institution. Their
best known use is in sporting events, which attract millions of view-

tournaments consist aftagesduring which severaimatchesake
flace, matches whose outcomes determine the set of matches in the
néxt stage, and so on, until some final outcome of the tournament
is reached. But tournaments vary in how many stages take place,
which matches are played in each stage, and how the outcome is
determined.

In this paper we focus on a narrower class of tournamémisck-
outtournaments. In this very familiar format the players are placed
at the leaf nodes of a binary tree. Players at sibling nodes compete
against each other in a pairwise match, and the winner of the match
moves up the tree. The player who reaches the root node is the
winner of the tournament. We show an example in Figure 1.

While our motivation is anchored in the tournament world, the
specific format of knockout tournaments is isomorphic to a partic-
ular class of elections studied within voting theory, namely sequen-
tial elimination voting with pairwise comparison [3, 9]. In such
elections the players are the candidates, and the pairwise match-
ing represents a pairwise election rather than a sporting match, but
otherwise the process is identical.

What makes the connection to elimination election particularly
striking is the problem we tackle in this paper, namely schedule
control. In knockout tournaments, as in sequential elimination vot-
ing with pairwise comparison, the designer has limited control: The
shape of the tournament/voting tree, and the assignment of play-
ers/candidates to its leaves. This is calledsbleeduleof the tour-
nament or the agenda of the election. The rest is outside the de-
signer's control. The question we tackle is how a designer can
best exercise this control in order to optimize a certain quantity.
In this paper we focus on maximizing the winning probability of
a given target player (this is usually viewed in a negative connota-
tion, namely as biasing the tournament or rigging the election; of
course by studying the difficulty of such manipulation we do not

ers and billions of dollars annually. But tournaments also play a key condone it, and the results can be used to prevent it rather than en-
role in other social and commercial settings, ranging from the em- able it). This is a natural question in the context of voting; there are
ployment interview process to patent races and rent-seeking con-several others in the context of tournaments, but they lie outside
tests (see [12, 15, 10] for details). the scope of this paper. Thus, while in general the theory of tour-
Tournaments constitute a strict subclass of all competition for- naments is quite different from the theory of voting, they coincide
mats, and yet they still allow for many different variations. All when we speak about schedule control in knockout tournaments.
— . This has not always been recognized, and specifically some liter-
This work is supported by NSF grants 11S-0205633-001 and SES- ature on knockout tournaments makes no reference to voting, but
0527650. we will appeal to the literature of both camps. For coherence, how-

l . . . A . | .
. I—(|j¢_ere we (‘j.se thedterm with the comhmonsense meaning, instead ofgyer, we will continue to use the sports/tournament terminology in
indicating directed tournament graphs. the remainder of this paper.

Our problem may at first seem narrow — a very restricted class of
tournaments, and a very specific design objective. But this seem-

Cite as: On the Complexity of Schedule Control Problems for Knock-
out Tournaments, Thuc Vu, Alon Altman, Yoav ShohaRroc. of 8th

Int. Conf. on Autonomous Agents and Multiagent Systems (AA-; ; ; e
MAS 2009) Decker, Sichman, Sierra and Castelfranchi (ds.), May, 10— ingly simple question turns out to be surprisingly subtle and some

15, 2009, Budapest, Hungary, pp. XXX-XXX. of the answers are counter-intuitive. To begin with, note that the

Copyright(C) 2008, International Foundation for Autonomous Agents and number of possible schedules grows extremely quickly with the
Multiagent Systems (www.ifaamas.org). All rights reserved.

Ly

¥
v
® @ & ©®

Figure 1: An example of a tournament structure for 6 players and one possible outcome

number of players, e.gQ(Q,?—ll) when the possible schedule is
limited to be of balanced tournament only. This means that even for

a small number of players it can be hard to answer the question. For

n = 2,4, 8,16, 32, the numbers of possible, non-duplicate sched-
ules arel, 3,315,638 x 10°,122 x 10%* respectively. But the
asymptotic analysis is also not straightforward, since it is sensitive
to several variations of the problem modeling. Our basic model,
which appears in both the tournament literature and the voting lit-
erature, is that of a winning-probability matrix, tlig 5) entry of
which represents the probability that playewins over player;

in a match between them (see [6, 4] for example). With no fur-
ther constraints, it is unknown whether there exists an efficient al-
gorithm to find the optimal structure. However, when we place
certain natural constraints on the structure of the tournament or
the winning-probability matrix, the problem becomes either prov-
ably easy (namely, polynomial) or provably hard (specifically, NP-

nodes

e A seedingS which is a one-to-one mapping between the
players inN and the leaf nodes af

We write KT as KT when the context is clear.

To carry out the tournament, each pair of players that are as-
signed to sibling leaf nodes with the same parent compete against
each other in a pairwise elimination match. The winner of the
match then "moves up" the tree and then competes against the win-
ner of the other branch. The player who reaches the root of the
tournament tree is the winner of the tournament.

Intuitively the probability of a player winning the tournament
depends on the probability that it will face a certain opponent and
win against that opponent. We formally define this quantity below:

Definition 2. (Probability of Winning a Tournament) Given a

complete). In this paper, we discuss these settings and analyze th&et V of players, a winning probability matri®, and a knockout

complexity of the problem in each setting.
The rest of the paper is organized as follows. We first present

tournamenK T = (T, S), the probability of playek winning the
tournamentK T, denotedy(k, KT~ is defined by the following

the general model for tournament design in Section 2. Then in Sec- recursive formula:

tion 3 we summarize the existing results from the literature. We

then describe in Section 4 and 5 different constraints that can be
placed on the model and our results for these settings. We sum-

1. If N = {j}, theng(k, KT) = { (1) :; ’Z ;;

2. If |N‘ > 2, |etKTN1 = (Tl,S1) andKTN2 = (TQ,SQ) be

marize the results in Section 6 and suggest possible directions forthe two sub-tournaments df 7" such thatl; and7% are the two

future work.

2. THE GENERAL MODEL AND PROBLEM

We start out with the most general model of a knockout tour-
nament. In this setting, there is no constraint on the structure of

the tournament, as long as it only allows pairwise matches between
players. We also assume that for any pairwise match, the probabil-

ity of one player winning against the other is known. This prob-
ability can be obtained from past statistics or from some learning
models. Here we do not place any constraints on the probabili-

subtrees connected to the root node/pfand N; and N5 are the
set of players assigned to the leaf node%'0&ndT> by S; and.Ss
respectively. Ift € N; then

q(k, KTn) = Y q(k, KTn,) x q(i, KTny) X Py
i€Ng
and symmetrically fok € Ns.

This recursive formula also gives us an efficient way to calculate
q(k, KT):

ties either, besides the fundamental properties. Thus there might be PROPOSITION 1. Given a setV of players, a winning proba-

no transitivity between the winning probabilities, e.g., playbas
more thar50% chance of beating playgt player; has more than
50% chance of beating playér, but playerk also has more than
50% chance of beating playéer

We define a knockout tournament as the following:

Definition 1. (General Knockout Tournament) Given a setV
of players and a matri® such thatP;; denotes the probability that
playeri will win against player; in a pairwise elimination match
and0 < Pj; =1 — Pj; <1 (Vi,j € N), a knockout tournament
KTy = (T, S) is defined by:

e Atournament structur@ which is a binary tree withV| leaf

bility matrix P, and a knockout tournamedt Ty = (7, S), the
complexity of calculating(k, K'T) for a givenk € N isO(|N|?).

PROOF First note that the number of operations is linear in the
number of pairgi,) with ¢, 5 € N we consider. Moreover, for a
giveni, j € N we match up andj only once. Thus the complexity
isO(IN»). O

Given a set of playerév and the winning probabilitied be-
tween the players, the goal of the tournament designer is to come up
with the tournament structurE and the seeding that will max-
imize the probability of a given playgt € N winning the tour-
nament. This optimization problem has a decision version which

&

0

@

N

b
KT

LA

N
KT

Figure 2: Biased knockout tournament K'T™ that maximizes the winning chance of and a general tournamentKT'

asks if there exisf’ and S such that the probability o winning
the tournament is greater than a given value
The first intuition for the optimization problem is that the later

Here we show that the biased structure in Figure 2 is optimal
over any tournament structure, as opposed to a similar result in [4]
that is only applicable for a very specific linear structure. Proposi-

any player plays in the tournament, the better chance she has oftion 2 gives us the shape of the optimal tournament structure and

winning the tournament. We state and prove this intuition in the
following proposition.

PROPOSITION 2. Given a set of playersv and the winning
probability matrix P, the tournament structure that maximizes the
probability of playerk € N has the biased structure &7 in
Figure 2 in whichk has to play only the final match.

PROOF We prove this by induction.

Base caseWhen|N| = 2, there is only one possible binary tree
with 2 leaf nodes.

Inductive stepAssume that the theorem holds forwith | V| <
n — 1. For any giverk € N, we will show that it also holds foN
with | V| = n by converting any tournament structure that does not
have a biased structure KT as in Figure 2 such that iK'T™, k
has at least the same chance of winning.

Let's consider any given tournament structi¥d” that does not
have the biased structure. LAT: and KT be the two disjoint
sub-tournaments that make &¢I, and letN;, N5 be the set of
players assigned t&'Ty, KT respectively. Assume wlog thate
N3. Since|N;| < |N|, the chance of winning the tournament is
maximized whenk'T, has the biased structure. Therefore we just
need to compare the chancetovinning in K'T" with its chance in
KT* as shown in Figure 2:

gk, KT) = Y [Pei-q(i, KT2)] x Y [Py - q(j, KT1)]
iE€NH\{k} JEN
q(k, KT") = > Pu-q(i,KTz) - Py - q(j, KTh)

JEN1,i€N)\{k}

>

JEN1,iEN)\{k}

+ Py - q(3, KT1) - Pji - q(3, KT>)

q(k, KT*) — q(k, KT) = >

JENTIENS\{k}
(ijPji + Py Pij — P’”'Pk'j)}

lq(j, KT1) - q(i, KTz)-

Pij + Pji =1=
Pr; Pji + PriPij > min{Pri, Pij} > PriPr;j

Therefore we have(k, KT*) > q(k, KT). O

lets us reduce the original problem to a smaller one. Yet it still re-
mains an open question whether there exists an efficient algorithm
to find the exact optimal schedule. Nevertheless, by placing certain
natural constraints on the structures of the tournament or the win-
ning probabilities of the players, we manage to get a better analysis
of the problem. In the next section we will introduce the common
constraints considered in the literature and the existing results in the
settings with these constraints. We will also discuss the limitations
of these results.

3. RELATED WORK

In the most common settings in the tournament design literature
(see, e.qg., [6, 1, 13]), the players are assumed to have intrinsic abil-
ities and ranked based on these abilities. The abilities are unknown
but the ranking is available to the designer. In this setting, the prob-
ability of one player winning against another is also known and
is monotonic with regard to the rankings of the players, i.e., any
player will have a higher chance of winning against a lower ranked
player than winning against a higher ranked player. Besides this
monotonicity constraint, the structure of the tournament is also re-
stricted to be balanced binary tree. Most of the works in this setting
focus on maximizing the winning probability of the highest ranked
player. Yet the existing results are limited to very small cases of
the number of players, such as= 4 orn = 8. In our work, we
generalize the objective function to maximizing the winning proba-
bility of any given player, not just the highest ranked one, and focus
on asymptotic results instead.

Tournament design problems are also addressed in the context of
voting. In [8], the candidates are competing in an election based on
sequential majority comparisons along a binary voting tree. In each
comparison, the candidate with more votes wins and moves on; the
candidate with less votes is eliminated. Essentially, the candidates
are competing in a knockout tournament in which the result of each
match is deterministic. The probability of winning a match is either
0 or 1. In this setting, without any constraints on the structure of the
voting tree, there is a polynomial time algorithm to decide whether
there exists a voting tree that will allow a particular candidate to
win the election. When the voting tree has to be a balanced binary
tree, a modified version of the problem is NP-complete. In this
version, there is a weight associated with each match between a
pair of players, and the question becomes how to find the voting

tree with the minimum weight that allows the target candidate to for any number of players (e.g., even wHé¥ is not a power of 2).
win the election. In this case, when there is an odd number of players at any round,
The problem of finding the right voting tree (referred to as the we allow the tournament designer to let any player advance to the
control problem) is also addressed in [4] but with probabilistic com- next round without competing. This allows certain bias, e.g., if the
parison results instead. Here, the objective is finding a voting tree number of players i2™ + 1, there is an odd number of players at
that allows a candidate to win the election with probability at least every round except the final, and the target player can actually ad-
a certain value. Within this setting, the authors show that another vance straight to the final match. Nevertheless, it is still NP-hard to
modified version of the control problem is NP-complete. Besides find the optimal structure for the target player. This can be proved
the balanced tree constraint, the authors require the outcomes oby using a similar reduction in which we make sure that the target
the election to be “fair", i.e., the stronger candidate always wins player is in fact the only plausible choice for the designer to ad-
each pairwise comparison. We provide a much more general resultvance to the next round when there is an odd number of remaining
in our paper by not putting any restriction on the outcomes of the players.
matches. They are determined solely by the winning probabilities

between the players. 5. CONSTRAINTS ON PLAYER MODEL

The computational aspects of other methods of controlling an Besides the balance constraint on the structure of the tournament
election are also considered in [2, 5]. Here, the organizer of the . g o AR
we also address different constraints on the winning probabilities

election is trying to change the result of the election through con- between the players. One such constraint is on the possible values
trols (such as adding or deleting) of the voters or candidates. It has players. he p .
that the probabilities can take, e.g., the deterministic constraint.

been shown that for certain voting protocols, some methods of €N Another constraint is a certain overall structure that the winning

trol are computationally hard to perform. Nevertheless, our focus robability matrix need to satisfy, e.g., the menotonicity constraint
is not on using computational hardness to prevent manipulation but P Ity €9, Y :
We will discuss both types of constraints below.

rather on providing an analysis on the complexities of tournament
design problems. 5.1 Win-Lose Match Results
The first constraint we consider is to require the result of each

4. A CONSTRAINT ON THE STRUCTURE match to be deterministic, i.e., winning probabilities can only be
OF THE TOURNAMENT either 0 or 1. As mentioned in Section 3, a knockout tournament in

In Section 2, we have shown that the optimal general tournament t_his set_ting is analogous to a sequential pair_wise elimination ele_c-
structure is very unbalanced with the target player on one side andion- Given a tournament structure, a player in the tournament will
the rest of the players on the other side of the tree. One might say &ither win the tournament for certain (winning with probability 1)
that this structure is unfair since the target player will have to com- ©" will lose for certain (winning with probability 0). Note that the
pete only in the final match. One particular way to enforce fairness Wlnn;]ng prhobab_lllty matrix can be ar;]y arbitrary b|r}aLy matrix.
is to require the tournament structure to be a balanced binary tree When there is no constraint on the structure of the tournament,
(for simplicity, we assume that the number of players is a power of as shown in [8], there exists a polynomial time algorithm to find

2). This way, every player has to play the same number of matches!h€ tournament structure that allows a target playéo win the
in order to win the tournament. tournament or decide that it is impossible foto win. When the

tournament has to be balanced, it is still an open problem.

Definition 3. (Balanced Knockout Tournament) Given a set We shall now discuss another problem model that we believe
N of players such that\| = 2, a knockout tournameT" = will be helpful for the understanding of the proof of Theorem 3.
(T, S) is called balanced whefi is a balanced binary tree. In this model, there is no constraint to the tournament tree, except

that each player has to start from a pre-specified round. In other

Due to the attractiveness of this fairness between players, thewords, the tournament can take the shape of any binary tree, but
balanced knockout tournament format has been widely addressedeach player has to start at certain depth of the tree.
in the literature and is in fact the most commonly used format in o)
practice. In this setting, since the structure of the tournament is _ Definition 4. (Knockout Tournament with Round Placements)
fixed, the remaining control of the tournament designer is in the Given a setNNof players and a winning probability matriv, a
seeding of the tournament, i.e., the assignment of players to thevectorR € NI if there exists a knockout tournameRitI” such
leaf nodes of the tree. Thus our previous problem is reduced to that in KT, player: starts from roundi; (the leaf nodes with the
finding the seeding that will maximize the winning probability of ~Maximum depth in the tree are considered to be at round 1), then
a particular player. Note that as we have mentioned in Section 1,/ is called afeasibleround placement and such tournaméfil’
even in this seemingly simple format, the number of different seed- IS called a knockout tournament with round placem&ntWhen
ings to consider grows extremely fast with the number of players. there is an odd number of players at any given round, one player
Capturing this intuition, we have the following hardness result for Playing at that round can automatically advance to the next round.

the decision version of this problem:
P Note that when all players have round placement 1, the tourna-

THEOREM 1. Given a set of playerd& and a winning proba- ment is balanced. We have the following hardness result:
bility matrix P, it is NP-complete to decide whether there exists a
balanced knockout tournamehtI” such thatg(k, K'T') > ¢ for a
givend andk € N.

THEOREM 2. Given a set of player&/, the winning probabil-
ity matrix P such thatvi # j € N, P;; € {0,1}, and a feasible
round placement, it is NP-complete to decide whether there ex-
ists a tournament structur® 7" with round placemenk such that

This theorem follows from Theorem 3. Therefore we will defer atarget playerk € N will win the tournament.

the discussion of the proof of this theorem to the next section. Since
the decision version is NP-complete, it follows that optimization PROOF It is easy to show that the problem is in NP. We will
version of the problem is NP-hard. Note that the same result holds show the problem is NP-complete using a reduction from the Ver-

tex Cover problem. round. We matcl against; € C that covers it. For the remaining
vertex players, we match them up with — 1) holder players:i”.

Vertex Cover: Given a graptG = {V, E} and an integek, is After m rounds, all of the edge players will be eliminated (since the
there a subsef’ € V such tha{C| < k andC coversE? k vertex players left form a vertex cover). The remaining players at

the end of this phase akevertex players and.

Reduction method: Phase 3: Phase 3 is the final rounds after Phase 2. In this
We construct a tourname®T = (7, S) with a special playeo phase, we eliminate the remaining vertex players. At each round,
and a round placemetit such thab wins KT if and only if there the number of new holder players starting at that round is one less
exists a vertex cover of size at mast than the number of remaining vertex players. We match up the

vertex players witth”, ando with the remainingy. At the end of

KT contains the following playefs this phase, only remains.

o) For the other direction, we need to prove thaian win the tour-

1. Objective playero which starts at round 1. nament only if there is a vertex covér of sizek. First note that

during Phase 1, fos not to get eliminated, it has to play against a
vertex playew. Thus after the firsfn — k) rounds, there are at most

k vertex players remaining (there can be less if two vertex players
3. Edge players{e; € E}. There aren = |E| such players. Pplay against each other).

2. Vertex players{v; € V} which start at round 1. There are
n = |V| such players.

e; starts at roundn — k + i — 1). During Phase 2, the only way that an edge playean be elimi-
_ nated is to play againstthat covers it or play against another edge
4. Filler players: For each roundsuch thatin — k + m) > playere’ which started at an earlier round. dfis eliminated by

r > (n — k), there is one filler playef™ that starts at round ¢/, there must be eithét”, v, or f that was eliminated earlier by

r. Thus there are a total of. of them. They are meant for an edge playee’” (which can possibly be’). Since there is only

playero. (k — 1) holder players at each round,/if was eliminated by",

two vertex players must have played against each other and one of

them must have been eliminated fIf was eliminated by”, at that

roundr, o must have played against soméo advance. Thus for

all cases, there is at least on¢hat got eliminated. Note that in this

phase, at any round, there are offy+ 1) new players. Therefore,

at the end of this phase, there are exagtly- 1) players remaining

including o. If all edge players get eliminated by vertex players,

there arek vertex players remaining. If there is at least ernehich

did not get eliminated or got eliminated by another edge player but
The winning probabilities between the players are assigned as in"0t @ vertex player, there are less thiavertex players remaining.

Table 5.1. In a nutshell: Now during Phase 3, fos to win the tournamenty can only

play against a vertex player. Thus the number of vertex players is

1. oonly wins against; andf with probability 1 (always wins) reduced each round by 1. Moreover, since there/re 1) holder

and loses against all others with probability 1 (always loses). Playersh” starting at the first round of the phase, and one less for
each round after that, if there are less tiiavertex players at the

2. v; always wins againsk”, e; that it covers, and;, with beginning of Phase 3, there will be at least one non-vertex player

i’ > 4. It always loses against all other players. remaining. If that is the case, at the last round of Phase 3, there
must be at least one edge or holder player remainingcawil
lose the tournament.

Therefore, foro to win the tournament, there must bevertex
players at the beginning of Phase 3. This implies all edge players
5. Between twak” players, the winner can be either one. must have been eliminated by vertex players during Phase 2. So

each edge player must be covered by at least one of the remaining
The reduction is polynomial since the numbers of players in the vertex players after Phase 1. Since there are at inosthem after

5. Holder players: For each round there are a set of holder
playersh; (i.e., multiple copies of,") that start at round.
These players are meant for the vertex players. The number
of copies ofh” depends on the value of
-1f 1 <r < (n— k), there argn — r) copies
-If (n — k) <r < (n—k+m), there argk — 1) copies
-lif (n—k+4+m) <r < (n+m), thereardm +n —r)
copies

3. e; always wins against”, f, e;s with j' > j.

4. Between twof" players, the winner can be either one.

tournament is polynomial. Phase 1, these remaining vertex players form a vertex cover of size
We first need to show how to construct a schedil€ that al- at mostk. [

lows o to win the tournament if there exists a vertex cogeof size)))

at mostk. The desired< T is composed of three phases: After placing this constraint on the structure of the tournament

Phase 1:Phase 1 is the firstn — k) rounds. In this phase, tre_e, thetourn_an?ent_design problem has changed from easy to hard.
we eliminate all vertex players that are notGhwhile keeping the This gives an |nd|9at!on t_hat thg de_'slgn problem for balanced knock-
remaining vertex players, and At each round-, match upo with out tournament within this setting is probably also hard.

v ¢C and_let each o_f thén — r) holder players:” match up with 5.2 Win-Lose-Tie Match Results
the remainingu;. Notice that after each round, one vertex player

gets eliminated and there is one légs After (n— k) rounds, there When the match results are deterministic, it is an open problem
arek vertex players left corresponding to the vertice€in whether there exists an efficient algorithm to find the optimal bal-

Phase 2:Phase 2 is the following: rounds. In this phase, we anced knockout tournament for a given player. Surprisingly, when
eliminate all edge players. For each round, we matcto wyith we allow th(_ere_to be a tie between two players (each has equal
7. Ateach round, there will be one edge playerstarting atthat ~ €hance of winning), the problem becomes provably hard.

2\We overload some notations here but the given the context, it THEOREM 3. Given a set of player/, a winning probability
should be clear matrix P such thatP;; € {0, 1,0.5}, it is NP-complete to decide

vj €j f hi

o 1 0 1 0

v; | 1if4 <7, 0otherwise| 1if v; coverse;, O otherwise 0 1

e; - 1if s < j, 0 otherwise 1 1

I - - arbitrary 1
hi - - - arbitrary

Table 1: The winning probabilities of row players against column players inK'T

whether there exists a balanced knockout tournama&fitsuch that
q(k, KT) > ¢ foragivend andk € N.

The proof of Theorem 3 is similar to the proof of Theorem 2 with
two modifications to the reduction:

unknown. Yet, when we relax this condition to allow small vi-
olation, we can obtain certain hardness result. We call the new
conditione-monotonicity.

Definition 6. (Knockout Tournament with e-Monotonic Win-

1. We need to construct some gadgets that simulate the round placehning Probabilities) A winning probability matrixk is e-monotonic

ments, i.e., if playet starts from round, player: will not be elim-
inated until roundr. In order to achieve this, we will introduce
(2" — 1) filler players that only playei can beat. This will keep
playeri busy until at least round

2. We need to make sure that the round placement for any player

is at mostO(log(n)) with n equal to the size of the Vertex Cover
Problem so that the size of the tournament is still polynomial.
The details of the proof for this theorem is included in the appendix.

Since Win-Lose-Tie match results is a special case of general

winning probabilities, we can reduce the problem of finding the op-
timal balanced knockout tournament with Win-Lose-Tie match re-
sults to the problem of finding the optimal general balanced knock-
out tournament. This constitutes the proof for Theorem 1.

When there is no constraint on the structure of the tournament,

there exists a polynomial time algorithm to either find a schedule
that allows the target player to win with probability 1 or decide that

such a schedule does not exist. This algorithm is a modification
the algorithm introduced in [8] to compute possible winners. In the

with e > 0 when P satisfies the following constraints:
1. P+ Py =1
2. Py > Pj; V(i,5) i< j
V(i 5,5) 13 >]
As e goes to 0, the winning probability matri will gets closer
to being monotonic. Note that we only relax the second require-

ment of monotonicity. In this setting, the problem of finding the
optimal balanced structure is provably hard:

3. PijSPij’+€

THEOREM 4. Given a set of player$V, an e-monotonic win-
ning probability matrix P with e > 0, it is NP-complete to de-
cide if there exists a balanced knockout tournamfit such that
q(k, KT) > ¢ foragivend andk € N.

The proof for the theorem is included in the appendix.
Here we assume and§ have the same precision. Sinecean

modified version, when there is a tie between 2 players, we remove be arbitrarily small, this result suggests that there does not exist an
all the edges between them in the tournament graph. We will then efficient algorithm to find the optimal balanced tournament for a

proceed to finding all the winning paths from the target player to
other players in the tournament. If there is a winning path to all

target player in the setting with monotonic winning probabilities.

other players, there exists a schedule to make the target player wing, CONCLUSION AND FUTURE WORK

and it is the binary tree formed by combining the winning paths.

5.3 Monotonic Winning Probabilities

Another natural constraint is to require a certain overall struc-
ture of the winning probability matri®. One of the most common
models in the literature is the monotonic model (see for example [6,
11, 7, 14]). In this model, the players are ranked from htm
descending order of unknown intrinsic abilities. The tournament
designer only know the rankings and the winning probabilities be-
tween the players, which are correlated to the intrinsic abilities.

Definition 5. (Knockout Tournament with Monotonic Win-
ning Probabilities) A knockout tournamenkT = {N, T, S, P}
has monotonic winning probabilities when the winning probability
matrix P satisfies the following constraints:

1. ij —|—Pji =1

2. P > Py V(i,j): i<y

3. Pjj < Pyj41) (i, 5)

As in other settings, we can place the balance constraint on the

In this paper we have investigated the computational aspect of
schedule control for knockout tournaments. We have considered
several modelings of the problem based on different constraints that
can be placed on the structure of the tournament or the model of the
players. In particular, we have shown that when the tournament has
to be balanced, the structure control problem is NP-hard, even when
the match results can only be win, lose, tie, or when the winning
probabilities between the players have to:brmonotonic. We have
also charaterized the optimal structure for general knockout tour-
naments. The results are summarized in Table 2 with new results
in bold face.

When the match results are deterministic, the complexity of the
control problem remains an open problem for future work. Other
directions include finding optimal structure for other objective func-
tions such as fairness or “interestingness" of the tournament, or
considering other constraints on the tournament structure and player
models.

7. REFERENCES
[1] D. R. Appleton. May the best man wiThe Statistician
44(4):529-538, 1995.

structure of the tournament. However, similarly to the case of deter- [2] J. Bartholdi, C. Tovey, and M. Trick. How hard is it to

ministic match results, when we require the tournament to be bal-
anced, the complexity of finding the optimal tournament becomes

control an electionMathematical and Computer Modeling
16(8/9):27—-40, 1992.

General Prob| Win-Lose-Tie Win-Lose e-Mono | Mono

General Struct Open O(n?) O(n?) [Lang’07] | Open | Open
Balanced Struct NP-hard NP-hard Open NP-hard | Open
Round-placements NP-hard NP-hard NP-hard NP-hard | Open

Table 2: Summary of the complexity results

[3] S.J.Brams and P. C. Fishburn. Voting procedures. In K. J.
Arrow, A. K. Sen, and K. Suzumura, editotdandbook of
Social Choice and Welfare

[4] N.Hazon, P. E. Dunne, S. Kraus, and M. Wooldridge. How
to rig elections and competitions. GOMSOC’08 2008.

[5] E. Hemaspaandra, L. A. Hemaspaandra, and J. Rothe.

Anyone but him: The complexity of precluding an

alternative Artif. Intell., 171(5-6):255-285, 2007.

J. Horen and R. Riezman. Comparing draws for single

elimination tournament®perations Research

33(2):249-262, mar 1985.

F. K. Hwang. New concepts in seeding knockout

tournamentsThe American Mathematical Monthly

89(4):235-239, apr 1982.

J. Lang, M. S. Pini, F. Rossi, K. B. Venable, and T. Walsh.

Winner determination in sequential majority voting. In

IJCAI, pages 1372-1377, 2007.

J.-F. LaslierTournament solutions and majority voting

Springer, 1997.

[10] G. C. Loury. Market structure and innovaticFhe Quarterly
Journal of Economic$93(3):395-410, August 1979.

[11] J. W. Moon and N. J. Pullman. On generalized tournament
matrices SIAM Review12(3):384-399, jul 1970.

[12] S. Rosen. Prizes and incentives in elimination tournaments.
The American Economic RevigW(4):701-715, sep 1986.

[13] D. Ryvkin. The predictive power of noisy elimination
tournaments. Technical report, The Center for Economic
Research and Graduate Education - Economic Institute,
Prague, Mar. 2005.

[14] A.J. Schwenk. What is the correct way to seed a knockout
tournamentZhe American Mathematical Monthly
107(2):140-150, feb 2000.

[15] G. Tullock.Toward a Theory of the Rent-seeking Society
Texas A&M University Press, 1980.

(6]

(7]

(8]

(9]

APPENDIX

PrROOF OFTHEOREM 3. Similar to the Proof of Theorem 2, we
show here a reduction from the Vertex Cover problem.

Reduction method:
We construct a tourname®T" = (7, S) with a special playeo
such thab wins KT with probability 1 if and only if there exists a
vertex cover of size at most

KT contains the following players:

1. Objective playero

2. Vertex players:{v; € V} and an extra special vertex
which does not cover any edge. If we tet= |V| then there
aren + 1 vertex players.

. Edge players{e; € E}. There aren = |E| edge players.

. Filler players: For each roundsuch thad < r < [log(n —
k)], there arek filler playersf, ;, i.e., there arés copies of

fo. These players are meant to keep at ldasertex play-
ers advancing to the next round. For each roursdich that
[log(n — k)] < r < [log(n — k)] + [log(m)], there arek
filler players f ;. These are meant for the edge players. We
might refer to both types of filler players g$ or simply f".

. Holder players: For player;, there ar@/*9(»=*)1 _ 1 edge
holder players‘Léi. These will make sure no edge player will
be eliminated before reaching roufilbg(n — k)] + 1. For
each filler playerf;”, there are” — 1 holder playershlﬂ that
will make sure no filler player will be eliminated before reach-
ing roundr. There are also

K = glleg(n=k)]+[log(m)1+[log(k+1)]+1 _ 4
special holder players., that will allow playero to advance
to the final match.

The winning probabilities between the players are assigned as in
Table 3. In a nutshell:

1. oonly wins against; andh, with probability 1 (always wins)
and loses against all others with probability 1 (always loses).

v; always wins against” (both f; and f7), e; that it covers,
andv; with i’ > i. It always loses against all other players.
The special vertex playar, does not win against any edge
player but wins against any other vertex player.

2.

. e; always wins against.;, f", and wins with probability 0.5
against anothet;, .

. For the holder players, each of them only loses to the player
it is meant for. For example, edge holder playég only
loses to the edge playes. Holder players tie when playing
against each other or against an edge player (except for the
edge holder players they are meant for). They always win
againsb and vertex players.

The reduction is polynomial since the number of players in the
tournament iSO (K’). Without loss of generality, we assume that
the number of total players is a power of 2 because we can always
add moreh, players and this will not affect the reduction shown
below. Note that we consider the first round as round 1.

First we need to show how to construct a structir€ that let
o win with probability 1 if there exists a vertex covér of size at
mostk. The desired<T" is composed of two phases:

Phase 1:Phase 1 is the firdlog(n — k)] rounds. In this phase,
we eliminate allv ¢ C except the special vertex playes while
keepingo and all edge players. During this phase, for each player
that has corresponding holder players, we will match them together.
This will help each edge playerto get to roundlog(n — k)] + 1,
and each filler playef™ to get to round-. We also matcla with the
holder playerh, to helpo advancing to the final round. At round
1 < r < [log(n — k)], if the vertexwv; is in C, we match the
vertex playerv; with the filler playerf”. Otherwise we match it
with another vertex player that is not@\. At the end of this phase
, there are only; + 1 vertex players remaining. One of them is the
special vertex player.

Phase 2:Phase 2 is the followin@log(m)] + [log(k +1)] +1
rounds. In this phase, we eliminate all the edge players by repeat-

v, e 1 ht, e hl
o 1 0 0 0 0 1
Vs lifi<g, | 1ifv; coverse;, | 1 0 0 0
0 otherwise 0 otherwise
€ - 05 05| 1ifi=y, 1 1
0.5 otherwise
fr - - 0.5 0.5 vitfr=f7,] 1
0.5 otherwise
hL, - - - 0.5 0.5 1
hr - - - - 0.5 1
Y - - - - - 0.5

Table 3: The winning probabilities of row players against column players inK'T

7

v; e I hL, e Ky

o 1 1—ce¢ 1—¢ 1—e¢ 1 - € 1
vy | 1ifé <y, | 1if v; coverse;, 1 1—¢ 1—c¢ 1—¢

0 ow. (1 —€)ow.
e - 05 1 1ifsi =, 1 1
(1—¢€) ow.
fr - - 0.5 0.5 it =77, 1
0.5 otherwise

hL, - - - 0.5 0.5 1

hfr - - - - 0.5 1
! - - - - - 05

Table 4: The e-monotonic winning probabilities of row players against column players inK'T

edly matching each vertex player with the edge players that it cov-
ers. If there are more edge players than vertex players, we will

there can be only at mokt+ 1 vertex players remaining. Note that
since vertex playew, wins against any other vertex players, it must

match the remaining edge players who are covered by the samestill remain.

vertex player with each other. If there is any edge player that does
not have a match, we will match it with the edge filler playér
Note that there are at mostedge players that do not have a match.
After each round, at least half of the edge players will be elimi-
nated. Thus after at mo$tog(m)] rounds, all the edge players
will be eliminated. There will be only vertex players o and h,
remaining. We just need to match them up uais the only player
left sinceo wins against andh, with probability 1.

For the other direction, we need to prove thaan win the tour-
nament with probability 1 only if there is a vertex cov@rof size
k. We need to show that # wins with probability 1, after Phase
1, there will be onlyk + 1 vertex players remaining including the
special vertex, and during Phase 2, all edge players will be elimi-

nated by one of those remaining vertex players, i.e., no edge players

gets eliminated during phase 1.

First note that fo to win with probability 1, no holder players
excepth, can reach the final. Thus in the fifgbg(n— k)] rounds,
no edge player can get eliminated since thergaig?("—*1 — 1)
holder players for each edge player. Also no filler plafécan get
eliminated before round. At roundr such that: < [log(n — k)],
the only way for a vertex player to advance to the next round is
either playing against a filler playefi” or another vertex player.
It cannot advance by playing against an edge player that it covers,
since that would eliminate that edge player too early. It cannot
advance by playing a filler playg“t’“' with 7' > r either, since that
would eIiminatef“ too early. Therefore, besidésvertex players
playing againsy”, at least half of the remaining vertex players will
be eliminated after each round. At the end of rojibal(n — k)],

For o to win the tournament with probability of I, must not
play against any edge players either. Moreover, note that when
two edge players play against each other, each of them ha%a
chance moving on to the next round. Therefore the only way that
an edge player gets eliminated is to play against a vertex player that
covers it. So, each edge player must be covered by at least one of
the remaining: vertex players (since, does not cover any edge).
Consequently the set éfremaining vertex players forms a vertex
cover of sizek. []

PROOF OFTHEOREM 4. To prove this theorem, we show a re-
duction from the Vertex Cover Problem to the tournament design
problem in this setting. The reduction is similar to the proof of
Theorem 3 with the same set of players but with slightly different
winning probabilities (shown in Table 4). Essentially, we convert
the probabilities of a vertex player winning against edge players
that it does not cover from 0 td — €). Similarly for o, it now ei-
ther wins with probabilities as before or with probabilitieqd —¢).

The new winning probabilities aremonotonic with this ordering
of players in descending strengths: vo... v, €1... €m, ", he,
hgr, ho. Note that foro to win the tournament with probability
1, she can only play againstand h,. Thus all players of other
types must be eliminated with probability 1. This allows the proof
of Theorem 3 to hold in this setting.[]

