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Abstract

In order to characterize the set of desirable social chaigetfons, researchers
have proposed axioms that all social choice functions sheatisfy. However,
it has been shown that achieving these axioms is impossibt#ead of viewing
this impossibility result as a limitation, it can be viewes @n opportunity. In
this paper, we develop a means of comparing various soait&functions with
regard to a desired axiom by quantifying how often the axiswidlated.

To this end, we offer a new framework for measuring the quaift social
choice functions that builds from and provides a unifyingnfiework for previ-
ous research. This framework takes the form of what we cali@dtion graph.”
Graph properties have natural interpretations as metiicimparing social choice
functions. Using the violation graph we present new metsctgh as the min-
imal domain restriction, for assessing social choice fianst and provide exact
and probabilistic results for voting rules including plitsa Borda, and Copeland.
Motivated by the empirical results, we also prove asymptasults for scoring
voting rules.

First, these results suggest that voting rules based owigaicomparison (ex:
Copeland) are better than scoring rules (ex: Borda courgfois, these results
also suggest that although we can never fulfill our desir¢dfsaxioms, the fre-
guency of violation is so small that with even a modest nundfetoters we can
expect to never violate our axioms.



1 Introduction

Social choice theory is concerned with the extent to whiclividual preferences can
be aggregated into a social decision in a satisfactory nrariie idea of preference
aggregation can be implemented by designirgpeial choice functionwhich takes
a preference profile (a collection of the orderings of eadividual over alternatives
that express the preference of that individual) as inputretutns a socially optimal
alternative. The satisfaction of our goal to aggregateviddial preferences is then
described by the fulfillment of a set of socially desirabladitions on the social choice
function.

Unfortunately, social choice theory is sometimes called@éence of the impos-
sible” because of the domination of various impossibilityedrems. For example,
the Muller-Satterthwaite theorem [20] states that evegiadahoice function that is
weakly Pareto efficient and monotonic has a dictator, whoséeped alternative is
always chosen by the social choice function. One can testdmyal computer pro-
gram [17] that out of336 possible social choice functions with 2 voters and 3 candi-
dates, there are only 17 monotonic functions, all of whichehextremely unsatisfac-
tory properties such as dictatorship or constant output.

One perspective is that monotonicity is too strong and shbeldropped as a desir-
able conditions. However, the strength of this conditiomloa viewed as a positive or a
negative, depending on if the framework being used is qatalé or quantitative. Qual-
itatively, we are unable to differentiate between the dqualf social choice functions
because they all violate our criteria. In our quantitativeky the strength is a positive
because it better allows us to discriminate between sohiite functions which we
use to ask to what extent do different social choice funetigolate this condition.

We offer a new framework for quantitatively evaluating andparing social choice
functions. There are three key dimensions on which our etiain depends: the type
of violation we seek to quantify, the specific metric by whieh measure the violation,
and the population distribution over which the violationsts. We choose the first di-
mension to be monotonicity here and will motivate this ckditthe next section. As
we will discuss in the paper, our three dimensions have sraptl natural graph inter-
pretations. By introducing a model called the “violatiormph,” we provide a means
of easily varying the dimensions of the problem while appdythe same algorithms to
produce the computational results.

We then demonstrate our framework using different votingsas target social
choice functions and compare them via the aforementiomadmions using violation
graphs. For small and medium sized domains, we provide bahtend sampled
results. Interestingly, these results show that (amongrdtiings) voting rules based
on pairwise comparison, such as Copeland and Maxmin, perbatter than score-
based voting rules, such as plurality and Borda. Motivatethese empirical results,
we also prove certain asymptotic results that help us bettderstand the satisfaction
of monotonicity for scoring rules when the number of votersds to infinity.

The structure of our paper is as follows. In Section 2, wewdis¢he foundational
material needed to proceed. In Sections 3 and 4 we reviewethged work in social
choice theory and formally present the violation graph apph. Then in Section 5,
we provide empirical results and algorithms. In Section /e asymptotic results



that support these findings. Finally, we conclude and distutsire work in Section 7.

2 Background

To lay a foundation, we will first briefly cover the necessamtermial on social choice.

2.1 Social Choice Functions: Maskin Monotonicity versus 3at-
egy Proofness

Formally, letN = {1,2,...,n} denote a set of voters, ari@ denote a finite set of
alternatives. Lel be the set of strict total orders ow@rand denote voter i's preference
as;. A social choice function is a functiafi : L™ — O.

Not all social choice functions are equally desirable. Ehare several princi-
ples that social choice theorists have argued that soc@telfunctions should ide-
ally adhere to. As we mentioned, Maskin's monotonicity (etimes called “strong
monotonicity”) is such a desirable property. It states thilaén a social choice func-
tion chooses a candidate based on some preference profllesofaas, this candidate
should remain the selection under preference changes Wienénner’s position does
not fall in each voter’s profile. More formally,

Definition 1 (Maskin Monotonicity) A social choice function C is Maskinmatonic
if for anyo € O and any preference profilee L™ with C(-) = o, then for any other
preference profile-’ with the property thati € N,Vo' € O,0 > o' if o =; o, it must
be thatC'(>') = o.

There are two critical points to note about our use of Maskionotonicity.
First, as we mentioned in the introduction, all non-trivgakial choice functions vi-
olate Maskin monotonicity at some profile. Although it magsethat the require-
ment of Maskin monotonicity is too strict, it is preciselyetstrictness that gives us
great power of discrimination. If we instead used a weakeguirement like standard
monotonicity [19], many social choice functions would nailate this property at all,
giving us limited power to speak of the differences betweeting rules. Secondly,
Maskin’s monotonicity also plays an important role in implentation theory [18] in
that it serves as a necessary condition of Nash impleméityabi

A closely related condition is strategy-proofness.

Definition 2 A social choice functiod’ is manipulableat profile > by individual: via
=" if C(-_4, %) =i C(>), where(~_;, >%) is the profile resulting from replacing,
with >/ in >.

A social choice function istrategy-prooff it is not manipulable by any individual
at any profile.

It is well known [20] that strategy-proofness and Maskin moimmicity are equiv-
alent in unrestricted domains and that strategy-proofisessonger in restricted do-
main. Strategy-proofness is a reasonable property on thie bawhich to compare



social choice functions, and in the next section we disdusptevious work on mea-
suring its violation. However, Maskin Monotonicity is nskgood of a candidate, and
it is important to realize that it is a different diagnostiot because the relationship of
the number of profiles violating these different properisegnknown. Maskin mono-
tonicity is especially crucial to study given its importaria social choice theory and
implementation theory as we have mentioned.

Before we continue, we will describe the voting rules we Vaiter analyze.

2.2 \Voting Rules

The specific voting rules we consider in this paper are AtyraBorda, Copeland,
Maxmin, and Plurality with Runoff.

¢ Positional scoring rules Let s; be the point value of an outcome ranked in po-
sition j and refer tos = (s1,s2,...,8,) @s a scoring vector. Let(>-;,0) =
Sp(-4,0)» Wherep(i-;, 0) is the position of an outcomein an individual prefer-
ence-;, and for preference profile= (>~1,...,>,), letd(>,0) = Z;end(>;
,0). The winner is the outcome that maximizesi(>, o).

— Plurality is a positional scoring rule with scoring vectdr 0, ..., 0).
— Bordais a positional scoring rule with scoring vecton—1, m—2, ..., 0).

¢ Plurality with Runoff is a variation of plurality where the plurality scoring vec-
tor is used to determine the two outcomes with the highesescarhen, after
all other outcomes but the top two have been removed fronhalpteference
orderings, the plurality scoring rule is used again to deiee the winner.

e Copelandis a pairwise comparison based voting rule where for eachgfai
outcomes the plurality rule is used to determine the winfiltie pairwise com-
parison after removing all outcomes but the two in questitach outcome gets
one point for every pairwise comparison it wins and loses poiat for each
comparison it loses. The winner is the outcome with highestes

e Maxmin is a voting rule based on pairwise comparison. Né¢b, o') be the num-
ber of voters that preferto o’ and the score of outcomgequalsnin, co\,N (0, 0').
The winner is then the outcome with the highest score.

We assume alternatives can be ordered lexicographicallyteat ties are broken lexi-
cographically for all voting rules.

3 Related Work

Social choice functions are qualitatively characterizegltwo strong and well known
results, the Gibbard-Satterthwaite [12, 27] and the Mtlatterthwaite [20] theorems.
The Gibbard-Satterthwaite theorem states that for evetiakchoice function that

1social welfare functions were similarly characterized byot’s [1] seminal paper.



is non-dictatorial and whose range has at least three atiees, there exists at least
one profile that can be manipulated by a single voter. In al@mesult, the Muller-
Satterthwaite theorem states that for every social choicetfon that is weakly Pareto
efficient and non-dictatorial there is some profile where aatonic change with re-
spect to the winner would cause that alternative to lose.

While there has been research by Fedrizzi [9] and others mpatng voting sys-
tems by determining which of a set of desirable requiremfamtsocial choice func-
tions are satisfied , the previous work most relevant to thfgep has focused on quan-
tifying the proportion of profiles that are manipulable. dugh we focus on mono-
tonicity instead of manipulability, the quantitative negwof this work is related. The
first conjecture that the proportion of manipulable profiles small was made by Pat-
tanaik in [24]. An asymptotic bound on unstable profiles urttle plurality rule was
proved by Peleg in [25], and this work was extended and shapby Fristrup and
Kleiding [11] and also Slinko [28] where the proportion of miyaulable profiles was
shown to b@(%), with n being the number of voters and the constant factor depend-
ing on the number of candidates. In a similar line of work, Nurmi [23] focuses on
quantifying how often voting rules select the same winneid laow often the set of
winners overlap.

Other research approached the problem using computer agiond, with early
work by Nitzan [22] studying situations with up to 90 voters plurality and Borda
count by estimating the proportion of manipulable profi@glooking at three metrics
in addition to the proportion of manipulable profiles, Sri#®] simulated common
social choice functions looking for strategy-proofnessations. A slightly different
vein of work by Kelly [14, 15] examined the distribution of migulable profile propor-
tions for random social choice functions that were onto amutdictatorial and, using
computer simulation, found that the average proportion ahipulable profiles was
almost one.

Much of the related work has assumed that each profile is Bdikaly (referred
to as the Impartial Culture (IC) assumption) and thus irmepthis proportion as a
probability, as we do in this paper. However, other work hessiened that the identities
of voters are anonymous as well as impartial (IAC) giving wdifferent distribution
over profiles. Working in this distribution,Favardin [8, &amines both individual
and coalitional manipulation (while also allowing for cdenthreats) and finds that
Borda count is more vulnerable to strategic manipulati@ntB@opeland’s rule. Also
considering coalitional manipulation, Lepelley [16] gealizes the special cases of
IAC and IC to the space of Polya-Eggenberger probability eédnd runs simulations
to calculate violation probabilities. Slinko [26] evalaatsome voting rules including
approval voting, Borda, and plurality, by looking at the mpjotic average threshold
coalition size and provides analytic results.

Because the domain of all profiles violates strategy-presdnthere is a rich body
of work by Kelly and others [4, 2, 21] among others, lookingvatious restricted
domains where strategy-proofness holds. Simple majodting has been shown by
Maskin [5] to be strategy-proof in the restricted domain wehthe Condorcet win-
ner exists, but the Condorcet winner does not always exigt,the probability of
its existence even tends towards 0 as the number of alteegdticreases, as shown



in Fishburn [10]. Recent work by Bochet [3] gives the minindaimain restriction
for a non-dictatorial, Pareto optimal, and strategy-pi@ofMaskin monotonic) social
choice function to exist. However, the social choice fummsi that satisfy these re-
quirements in this minimal domain have a very strong dictatdlavor. A different
approach is to take a known domain where strategy-proofiads and calculate the
minimal monotonic extension as in Thomson [30] and Erden [6]

We focus on completing the picture in light of previous reskaWhile most previ-
ous work has concentrated on strategy-proofness, we fotidaskin’s monotonicity
and quantifying how much it is violated. In addition to usimgtrics used in previous
work, we also introduce the metric of domain restrictionffeeasuring the quality of a
social choice function.

4 Violation Graph
The violation graph is a natural tool for comparing differsacial choice functions.

Definition 3 (Violation Graph) A violation graph is a tupld/ = (C, A,G). Cis a
social choice functiond, the violation type, is a functioi x V x C' +— {T'rue, False}
that encodes our desired violation property (such as Maskmonotonicity) and is true
exactly when the two nodes and social choice funafidorm a violation.G = (V, E)
is a graph. V is the set of all possible preference profiles, dids the set of edgés
such thatifz,y € V, and A(z,y, C) is true, then the edgex, y) € E.

We use three metrics to quantify how much a social choicetfomwiolates the
propertyA. The first is the proportion of nodes with degree at least tfee assume
a uniform distribution over profiles, this is the probalilihat a random profile is in-
volved in a violation ofA. The second metric we use is the edge ratio, i.e. the ratio of
the edges in the graph to the number of edges in a fully coadegtph with the same
number of nodes. This can be viewed as the probability thatstwccessive elections
would provide a violation ofd, or in other words, would publicly demonstrate the flaw
in our voting rule. The third metric we use, the minimal domegstriction required
to make the violation graph disconnected, to our knowledgertot been used before.
This value shows how many profiles are truly causing the tima but is a difficult
metric to compute because it requires solving the NP-compi®blem of independent
set [13], which has no constant-factor approximation tsRsNP.

5 Empirical Results

To compute our desired metrics (edge ratio, node ratio, antb¢h restriction) on the
violation graph, we apply two different computational stgies: exact computation
and sampling. We purposely keep our metrics and model sibgtause of the com-
putational challenges of generating the violation graphthW alternatives and:

2We also note that the edges in our violation graph can be @steto hyper edges for axioms that require
more than two profiles to provide an instance of a violation.



voters, the graph grows &%m!?"). For everything beyond small examples this is not
feasible. However, to work around this problem, we samptesitace and also prove
asymptotic results in the next section.

We compute the edge ratio, node ratio, and domain resti¢teuristics exactly
when there are three candidates and seven or fewer voterslarfger numbers of
voters, we generate 1,000,000 pairs of random profiles, andéch pair, we check
for an edge between the two profiles. Checking for edges isck gperation and we
are only limited by the number of edges we wish to sample. $ampodes is more
difficult because after first choosing a random node, we mhesticall other nodes to
see if an edge exists. This is bounded®yn!™). To make the process more efficient,
we stop checking for neighbors of a node once we find the first 88 we will see in
the next section, since the edges are sparse, we check ntbst mbdes. Because of
this, the node ratio is computed with 1000 samples.

In order to compute the domain restriction, we tested foffexint heuristics for
domain restriction (minimum degree, maximum degree, ranédge, and random
node) because the NP-Complete nature of this problem madepadtssible to compute
exactly. In our results section, we include the results fithi best heuristic—the
minimum degree. This heuristic iteratively removes allliegghbors of the node with
the minimum degree. The results of this heuristic are guaeahto be an upper bound
for the optimal minimum domain restriction.

To give the reader a sense of what the violation graphs ldekdnd their wildly
varying structure, we include a sample of them for three ithatds and two, three, and
four voters, in Figures 1, 2 and 3. Note that we only depicttbeées with degree one
or greater. We include these small cases since the graplssiggestive of emerging
structures. However, our experimental results that follefer to the coarser measures
of domain restriction and edge and node ratios.

A

(a) Plurality (=Plur. w/ Runoff) (b) Borda (= Copeland) (c) Maxmin
Figure 1: Violation Graphs for Two Voters and Three Candidat

5.1 Edge Ratio Results

In Figure 4, we graph the comparative behavior of the votingswe tested. There are
two key take-aways from the graphs. First, the evidenceestgghat as the number



(a) Plurality (b) Plurality with Runoff

I
e R,

(c) Borda (d) Maxmin (= Copeland)

Figure 2: Violation Graphs for Three Voters and Three Caaigisl

of voters grows, the edge ratio goes to zero for all the votirigs we tested. As we
will prove for scoring rules in Section 6, this ratio does &ttf converge to zero as
the number of voters grows to infinity. The second key poirth&t pairwise voting

rules (Copeland and Maxmin) perform better than scorings@Plurality, Borda, and
Plurality with Runoff) for all numbers of voters. Betweerethairwise rules, Maxmin
performs better than Copeland by a small amount. We do nat she graphs for

other numbers of candidates due to space reasons, but étasenships also hold for
candidates up to at least 20.

In addition, the data also shows another relationship. Wixémg the number of
voters as we increase the number of candidates, the edgeatsdi goes to zero. In
Figure 5, the edge ratio converges, but it does so at a slatethran when we fix the
number of candidates and increase the number of voters.

5.2 Node Ratio Results

In Figure 6, we graph the node ratio for Borda, PluralityyRlty with run-off, Copeland,
and Maxmin. In contrast to our edge results, as the numbertefsincreases, the node
ratio increases. A more striking comparison is that in prasiwork on the node ratio
for strategy-proofness it was shown empirically and theécad#y that the node ratio
goes to zero as the number of voters increases. From thismgeeathat even though
the existence of at least one violation of strategy-prosdrie equivalent to the exis-



(a) Plurality (b) Copeland

Figure 3: Violation Graphs for Four Voters and Three Canidisla

tence of at least one violation of monotonicity on the unietg#d domain, the actual
node ratio for the two axioms is different, and may convemeyposite values. We
will see in the next section a closer look into the meanindhefriode ratio by means
of the domain restriction heuristic.

We also note that according to the node ratio, pairwise ratesetter than scor-
ing rules. This is not surprising since pairwise rules suelCapeland and Maxmin
are well-known as extensions @ondorcet proceduresvhich choose the Condorcet
winner when it exists. One can verify that among any pair ofifgs where Condorcet
winners exist, there are no monotonic violation.

5.3 Domain Restriction Results

Domain restriction is the final metric we will examine. Thitoas us to refine our
results on the node ratio. If a voting rule has a high node tatt only very few nodes
need to be removed to disconnect the graph (restrict the idasoahat no violations
occur), then the high node ratio is an artifact of a few céiaimd well-connected nodes.
If we can prohibit these profiles from occurring in practioe we can rule them out
due to low probability, a voting rule with a high node ratid buow domain restriction
might be considered a good voting rule.

Looking at the data, we find that pairwise rules are bettar Htaring rules, as can
been seen in Figure 7. Although the node ratio of Copelandvied than Maxmin,
the structure of the graphs are such that Maxmin scores litvaarCopeland using our
domain restriction techniques. This can be seen in a smathple by looking at the
violation graphs of Maxmin in Figure 1(c), where by only dalg the two centered
nodes, all the violation edges are eliminated.

Most importantly, even though the node ratio increaseddhajgis the number of
voters increases, most nodes do not need to be removed feogrdph, and the pro-
portion of nodes that needs to be removed tends toward zeadi the voting rules we
tested.
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(b) Up to 20 voters

Figure 4: Comparative Edge Ratio Results for Three Caneéd@fwo views of the
same data)

6 Asymptotic Results

We can see from our experimental results that by fixing thebrrmof candidates and
increasing the number of voters, the ratio of violation eddecreases. One may start
to wonder: does this ratio converge, and if so, what is thé@%mVe prove in this
section that this ratio converges to 0 when- 0.

Suppose the number of violation edges for some scoring iulé&'(n, m) and the
number of violation nodes i¥ N (n, m), where the number of all possible edges and
nodes iskE(n, m) andN (n, m).

Our start point is a known result of Slinko[28] concerning ttumber of unstabfe

3A profile is unstable if a unilateral deviation from one vatan lead to the change of outcome.
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Figure 6: Comparative Node Ratio Results for Three Candgat

U(n,m)
N(n,m)"

profilesU (n,m). Let L(n,m) =

Theorem 1 (from Slinko [28])

dm Dm

—— < L < =

7n S Lnm) < 5,
whered,,, and D,,, are constants that depend only on

Theorem 2 Whenn — oo, we have

e lim, . % =0,
V N (n,m) _

N(nm) ¢, whereQ < ¢ < 1.

e lim, .

11
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Figure 7: Proportion of Nodes Removed with Domain Restiicfor Three Candidates

Let C'(n,m) be the number of all profile- in {1,...,n} such that when adding
a vote>,, ., from an additional voten + 1, the outcome will be changed. Then the
following lemma holds:

C(n,m) __ D,
Lemma 1l N((n,m)) =Ln+1,m)< SR
Proof: Suppose> is a profile in{1,...,n} such that when adding a vote, ;
(note that there are! possible>,, 1) from an additional voter + 1, the outcome will
be changed. Itis easy to see that >, 1) is an unstable profile if1,...,n,n + 1}
and all the unstable profiles 1, ...,n,n + 1} can be generated from such We
have
Cn,m) = U(n+'1,m) _ L(n+ l,m)]\'f(nJr 1,m)
m.: m:
= L(n+1,m)N(n,m).

Thus, according to Theorem 1, we have

Dy,
— =1L 1 < .
N(n,m) (n+1,m)< n+1

Thus whenmn — oo, the probability that “adding an additional vote to a random
profile changes the outcome”is 0.
Proof: (Theorem 2

e We now prove the first part of Theorem 2, the edge ratio. Supptizerwise,
there are two possibilitiestim,, . VE%”;;’;) # 0 or VEEE;";T’;’;‘) does not con-
verge. Either way, we havE E(n,m) = cE(n,m) for ¢ # 0 for some suffi-

ciently largen. One can prove this implidg N (n, m) = ¢ N(n,m) for ¢’ # 0.

12



Now consider a monotonic violation for voters where for voting rulg we
havef(>') = a, f(>") = b # a and>" is an improvement of’ w.r.ta. When
adding an additional votet + 1, by the comments following Lemma 1, we
know thatf(>',>! ) = aandf(>",>"_ ) = b (there are a small proportion
of profiles that change the outcome, but this reduces the antdwiolations).
Further,(>", >/, ) is still monotonic from(>’, >] . ;) only if the rank ofa in
>, is at least the same asi#{, ;. The number of such pai(s>],, ;, >/, ;)

is strictly less thar(m!)?, the factor by which the number of edges increases
fromn voters ton + 1 voters.

The other case that can generate monotonic violationwithl voters is when

a previous pair of profiles without violation now becomes bgeadding voter
.. D2

n + 1. One can count that the number of such pairs is at rﬁ% +==)(1—

c)E(n,m)(m!)?. Clearly, its ratio toE(n + 1, m) goes to 0 a& — oco.

XE(Mm+1m) _ yVE(Mnm
YE(n+1,m) =c E(n,m)

0 < ¢” < 1, which leads tdim,, . VEE(EZRJ)L)

To sum up, we hav ) for sufficiently largen and some

= 0, a contradiction.

e Similarly, for the node ratio, consider a monotonic viadatifor n voters where
for voting rule f we havef(>') = a, f(>") = b # a and>" is an improvement
of >’ w.r.t . When adding an additional voter+ 1, we still have thatf (>’
,>141) =aandf(>",>7_ ) = b(with a small proportion of deviations which
tends to 0 divided by the number of all profiles). We now prdad tfor such a
violation node>' for n voters,(>', >/ . ;) is a violation node for any, , , for
n + 1 voters. In other words, we only need to prove that for any, ,, we can
find its monotonic improvement;,  ; w.rta. This can be easily achieved by
fixing the ranking ofa and permuting other candidates. similarly, we can prove
that for such a violation node” for n voters,(>",>"_ ) is still a violation
node for any>/’ ;, since this amount to say that we can find some vote that can
be improved ta>;, , ; w.r.t toa. Thus, we conclude that for any violation node
for n voters, we can generate! violation nodes corresponding to it far+ 1
voters.

The same as the edge ratio, the other case that can generaitomio violation
with n + 1 voters is when a previous pair of profiles without violaticownbe-
comes one by adding voter+ 1. However we can similarly exclude this since
this proportion tends to 0.

VN(n+1l,m) _ m!VN(nm) _ VN(nm
N(n+1,m) — mIN(nm) ~—  N(n,m)

w — ¢ for some constant
n,m)

To sum up, ) for sufficiently largen,

which leads tdim,, .

7 Conclusion and Future Work

The contribution of this paper is two-fold. First, we offemaw viewpoint on the
comparative analysis of voting rules. Second, we provideigaal results on the

13



application of our new approach to Maskin’s monotonicity.

Our results show that pairwise voting rules, like Maxmin &wapeland, are well-
behaved. On the other hand, the commonly used scoring rtiRisi@lity and Borda
have a higher degree of monotonic violation by all the messwe tested. In addition,
our results show that even though the majority of profilesrarelved in a monotonic
violation (the node ratio is increasing in voters), the at@ns can be eliminated by
removing a small proportion of profiles. This domain resimit is not only very low,
but it also tends to zero as the number of voters increasallfinur asymptotic results
provide the first proof of the asymptotic behavior of the edg®, which goes to zero
as the number of voters increases, and also show that theraimaleonverges.

One future direction is to prove a tight bound on the nod®natien the number
of voters tends to infinity and also prove a bound on the edtie as the number
of candidates tends to infinity. We are also investigating kioting rules behave with
respect to the violation of the conjunction (disjunctiofjMeo or more axioms. Finally,
the most promising direction is going beyond the metricsaafenand edge ratios and
leveraging the richer structure (seen in Figures 1, 2, amd tBle violation graph itself.
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