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Abstract

In order to characterize the set of desirable social choice functions, researchers
have proposed axioms that all social choice functions should satisfy. However,
it has been shown that achieving these axioms is impossible.Instead of viewing
this impossibility result as a limitation, it can be viewed as an opportunity. In
this paper, we develop a means of comparing various social choice functions with
regard to a desired axiom by quantifying how often the axiom is violated.

To this end, we offer a new framework for measuring the quality of social
choice functions that builds from and provides a unifying framework for previ-
ous research. This framework takes the form of what we call a “violation graph.”
Graph properties have natural interpretations as metrics for comparing social choice
functions. Using the violation graph we present new metrics, such as the min-
imal domain restriction, for assessing social choice functions and provide exact
and probabilistic results for voting rules including plurality, Borda, and Copeland.
Motivated by the empirical results, we also prove asymptotic results for scoring
voting rules.

First, these results suggest that voting rules based on pairwise comparison (ex:
Copeland) are better than scoring rules (ex: Borda count). Second, these results
also suggest that although we can never fulfill our desired set of axioms, the fre-
quency of violation is so small that with even a modest numberof voters we can
expect to never violate our axioms.
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1 Introduction

Social choice theory is concerned with the extent to which individual preferences can
be aggregated into a social decision in a satisfactory manner. The idea of preference
aggregation can be implemented by designing asocial choice function, which takes
a preference profile (a collection of the orderings of each individual over alternatives
that express the preference of that individual) as input andreturns a socially optimal
alternative. The satisfaction of our goal to aggregate individual preferences is then
described by the fulfillment of a set of socially desirable conditions on the social choice
function.

Unfortunately, social choice theory is sometimes called a “science of the impos-
sible” because of the domination of various impossibility theorems. For example,
the Muller-Satterthwaite theorem [20] states that every social choice function that is
weakly Pareto efficient and monotonic has a dictator, whose preferred alternative is
always chosen by the social choice function. One can test by asmall computer pro-
gram [17] that out of336 possible social choice functions with 2 voters and 3 candi-
dates, there are only 17 monotonic functions, all of which have extremely unsatisfac-
tory properties such as dictatorship or constant output.

One perspective is that monotonicity is too strong and should be dropped as a desir-
able conditions. However, the strength of this condition can be viewed as a positive or a
negative, depending on if the framework being used is qualitative or quantitative. Qual-
itatively, we are unable to differentiate between the quality of social choice functions
because they all violate our criteria. In our quantitative work, the strength is a positive
because it better allows us to discriminate between social choice functions which we
use to ask to what extent do different social choice functions violate this condition.

We offer a new framework for quantitatively evaluating and comparing social choice
functions. There are three key dimensions on which our evaluation depends: the type
of violation we seek to quantify, the specific metric by whichwe measure the violation,
and the population distribution over which the violation exists. We choose the first di-
mension to be monotonicity here and will motivate this choice in the next section. As
we will discuss in the paper, our three dimensions have simple and natural graph inter-
pretations. By introducing a model called the “violation graph,” we provide a means
of easily varying the dimensions of the problem while applying the same algorithms to
produce the computational results.

We then demonstrate our framework using different voting rules as target social
choice functions and compare them via the aforementioned dimensions using violation
graphs. For small and medium sized domains, we provide both exact and sampled
results. Interestingly, these results show that (among other things) voting rules based
on pairwise comparison, such as Copeland and Maxmin, perform better than score-
based voting rules, such as plurality and Borda. Motivated by these empirical results,
we also prove certain asymptotic results that help us betterunderstand the satisfaction
of monotonicity for scoring rules when the number of voters tends to infinity.

The structure of our paper is as follows. In Section 2, we discuss the foundational
material needed to proceed. In Sections 3 and 4 we review the related work in social
choice theory and formally present the violation graph approach. Then in Section 5,
we provide empirical results and algorithms. In Section 6 weprove asymptotic results
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that support these findings. Finally, we conclude and discuss future work in Section 7.

2 Background

To lay a foundation, we will first briefly cover the necessary material on social choice.

2.1 Social Choice Functions: Maskin Monotonicity versus Strat-
egy Proofness

Formally, letN = {1, 2, . . . , n} denote a set of voters, andO denote a finite set of
alternatives. LetL be the set of strict total orders overO and denote voter i’s preference
as≻i. A social choice function is a functionC : Ln 7→ O.

Not all social choice functions are equally desirable. There are several princi-
ples that social choice theorists have argued that social choice functions should ide-
ally adhere to. As we mentioned, Maskin’s monotonicity (sometimes called “strong
monotonicity”) is such a desirable property. It states thatwhen a social choice func-
tion chooses a candidate based on some preference profile of all voters, this candidate
should remain the selection under preference changes wherethe winner’s position does
not fall in each voter’s profile. More formally,

Definition 1 (Maskin Monotonicity) A social choice function C is Maskin monotonic
if for anyo ∈ O and any preference profile≻∈ Ln with C(≻) = o, then for any other
preference profile≻′ with the property that∀i ∈ N, ∀o′ ∈ O, o ≻′

i o′ if o ≻i o′, it must
be thatC(≻′) = o.

There are two critical points to note about our use of Maskin’s Monotonicity.
First, as we mentioned in the introduction, all non-trivialsocial choice functions vi-
olate Maskin monotonicity at some profile. Although it may seem that the require-
ment of Maskin monotonicity is too strict, it is precisely the strictness that gives us
great power of discrimination. If we instead used a weaker requirement like standard
monotonicity [19], many social choice functions would not violate this property at all,
giving us limited power to speak of the differences between voting rules. Secondly,
Maskin’s monotonicity also plays an important role in implementation theory [18] in
that it serves as a necessary condition of Nash implementability.

A closely related condition is strategy-proofness.

Definition 2 A social choice functionC is manipulableat profile> by individuali via
≻′ if C(≻−i,≻′

i) ≻i C(≻), where(≻−i,≻′
i) is the profile resulting from replacing≻i

with ≻′
i in ≻.

A social choice function isstrategy-proofif it is not manipulable by any individual
at any profile.

It is well known [20] that strategy-proofness and Maskin monotonicity are equiv-
alent in unrestricted domains and that strategy-proofnessis stronger in restricted do-
main. Strategy-proofness is a reasonable property on the basis of which to compare
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social choice functions, and in the next section we discuss the previous work on mea-
suring its violation. However, Maskin Monotonicity is no less good of a candidate, and
it is important to realize that it is a different diagnostic tool because the relationship of
the number of profiles violating these different propertiesis unknown. Maskin mono-
tonicity is especially crucial to study given its importance in social choice theory and
implementation theory as we have mentioned.

Before we continue, we will describe the voting rules we willlater analyze.

2.2 Voting Rules

The specific voting rules we consider in this paper are Plurality, Borda, Copeland,
Maxmin, and Plurality with Runoff.

• Positional scoring rules: Let sj be the point value of an outcome ranked in po-
sition j and refer tos = (s1, s2, . . . , sm) as a scoring vector. Letd(≻i, o) =
sp(≻i,o), wherep(≻i, o) is the position of an outcomeo in an individual prefer-
ence≻i, and for preference profile≻= (≻1, . . . ,≻n), let d(≻, o) = Σi∈Nd(≻i

, o). The winner is the outcomeo∗ that maximizesd(≻, o).

– Plurality is a positional scoring rule with scoring vector(1, 0, . . . , 0).

– Borda is a positional scoring rule with scoring vector(m−1, m−2, . . . , 0).

• Plurality with Runoff is a variation of plurality where the plurality scoring vec-
tor is used to determine the two outcomes with the highest scores. Then, after
all other outcomes but the top two have been removed from all the preference
orderings, the plurality scoring rule is used again to determine the winner.

• Copeland is a pairwise comparison based voting rule where for each pair of
outcomes the plurality rule is used to determine the winner of this pairwise com-
parison after removing all outcomes but the two in question.Each outcome gets
one point for every pairwise comparison it wins and loses onepoint for each
comparison it loses. The winner is the outcome with highest score.

• Maxmin is a voting rule based on pairwise comparison. LetN(o, o′) be the num-
ber of voters that prefero too′ and the score of outcomeo, equalsmino′∈O\oN(o, o′).
The winner is then the outcome with the highest score.

We assume alternatives can be ordered lexicographically and that ties are broken lexi-
cographically for all voting rules.

3 Related Work

Social choice functions are qualitatively characterized1 by two strong and well known
results, the Gibbard-Satterthwaite [12, 27] and the Muller-Satterthwaite [20] theorems.
The Gibbard-Satterthwaite theorem states that for every social choice function that

1Social welfare functions were similarly characterized by Arrow’s [1] seminal paper.
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is non-dictatorial and whose range has at least three alternatives, there exists at least
one profile that can be manipulated by a single voter. In a similar result, the Muller-
Satterthwaite theorem states that for every social choice function that is weakly Pareto
efficient and non-dictatorial there is some profile where a monotonic change with re-
spect to the winner would cause that alternative to lose.

While there has been research by Fedrizzi [9] and others on comparing voting sys-
tems by determining which of a set of desirable requirementsfor social choice func-
tions are satisfied , the previous work most relevant to this paper has focused on quan-
tifying the proportion of profiles that are manipulable. Although we focus on mono-
tonicity instead of manipulability, the quantitative nature of this work is related. The
first conjecture that the proportion of manipulable profileswas small was made by Pat-
tanaik in [24]. An asymptotic bound on unstable profiles under the plurality rule was
proved by Peleg in [25], and this work was extended and sharpened by Fristrup and
Kleiding [11] and also Slinko [28] where the proportion of manipulable profiles was
shown to beΘ( 1√

n
), with n being the number of voters and the constant factor depend-

ing on the number of candidatesm. In a similar line of work, Nurmi [23] focuses on
quantifying how often voting rules select the same winners and how often the set of
winners overlap.

Other research approached the problem using computer simulations, with early
work by Nitzan [22] studying situations with up to 90 voters on plurality and Borda
count by estimating the proportion of manipulable profiles.By looking at three metrics
in addition to the proportion of manipulable profiles, Smith[29] simulated common
social choice functions looking for strategy-proofness violations. A slightly different
vein of work by Kelly [14, 15] examined the distribution of manipulable profile propor-
tions for random social choice functions that were onto and non-dictatorial and, using
computer simulation, found that the average proportion of manipulable profiles was
almost one.

Much of the related work has assumed that each profile is equally likely (referred
to as the Impartial Culture (IC) assumption) and thus interprets this proportion as a
probability, as we do in this paper. However, other work has assumed that the identities
of voters are anonymous as well as impartial (IAC) giving us adifferent distribution
over profiles. Working in this distribution,Favardin [8, 7]examines both individual
and coalitional manipulation (while also allowing for counter-threats) and finds that
Borda count is more vulnerable to strategic manipulation than Copeland’s rule. Also
considering coalitional manipulation, Lepelley [16] generalizes the special cases of
IAC and IC to the space of Polya-Eggenberger probability models and runs simulations
to calculate violation probabilities. Slinko [26] evaluates some voting rules including
approval voting, Borda, and plurality, by looking at the asymptotic average threshold
coalition size and provides analytic results.

Because the domain of all profiles violates strategy-proofness, there is a rich body
of work by Kelly and others [4, 2, 21] among others, looking atvarious restricted
domains where strategy-proofness holds. Simple majority voting has been shown by
Maskin [5] to be strategy-proof in the restricted domain where the Condorcet win-
ner exists, but the Condorcet winner does not always exist, and the probability of
its existence even tends towards 0 as the number of alternatives increases, as shown
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in Fishburn [10]. Recent work by Bochet [3] gives the minimaldomain restriction
for a non-dictatorial, Pareto optimal, and strategy-proof(or Maskin monotonic) social
choice function to exist. However, the social choice functions that satisfy these re-
quirements in this minimal domain have a very strong dictatorial flavor. A different
approach is to take a known domain where strategy-proofnessholds and calculate the
minimal monotonic extension as in Thomson [30] and Erden [6].

We focus on completing the picture in light of previous research. While most previ-
ous work has concentrated on strategy-proofness, we focus on Maskin’s monotonicity
and quantifying how much it is violated. In addition to usingmetrics used in previous
work, we also introduce the metric of domain restriction formeasuring the quality of a
social choice function.

4 Violation Graph

The violation graph is a natural tool for comparing different social choice functions.

Definition 3 (Violation Graph) A violation graph is a tupleM = (C, A, G). C is a
social choice function.A, the violation type, is a functionV ×V ×C 7→ {True, False}
that encodes our desired violation property (such as Maskin’s monotonicity) and is true
exactly when the two nodes and social choice functionC form a violation.G = (V, E)
is a graph.V is the set of all possible preference profiles, andE is the set of edges2

such that ifx, y ∈ V , andA(x, y, C) is true, then the edge(x, y) ∈ E.

We use three metrics to quantify how much a social choice function violates the
propertyA. The first is the proportion of nodes with degree at least one.If we assume
a uniform distribution over profiles, this is the probability that a random profile is in-
volved in a violation ofA. The second metric we use is the edge ratio, i.e. the ratio of
the edges in the graph to the number of edges in a fully connected graph with the same
number of nodes. This can be viewed as the probability that two successive elections
would provide a violation ofA, or in other words, would publicly demonstrate the flaw
in our voting rule. The third metric we use, the minimal domain restriction required
to make the violation graph disconnected, to our knowledge has not been used before.
This value shows how many profiles are truly causing the violations but is a difficult
metric to compute because it requires solving the NP-complete problem of independent
set [13], which has no constant-factor approximation unless P=NP.

5 Empirical Results

To compute our desired metrics (edge ratio, node ratio, and domain restriction) on the
violation graph, we apply two different computational strategies: exact computation
and sampling. We purposely keep our metrics and model simplebecause of the com-
putational challenges of generating the violation graph. With m alternatives andn

2We also note that the edges in our violation graph can be extended to hyper edges for axioms that require
more than two profiles to provide an instance of a violation.
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voters, the graph grows asO(m!2n). For everything beyond small examples this is not
feasible. However, to work around this problem, we sample the space and also prove
asymptotic results in the next section.

We compute the edge ratio, node ratio, and domain restriction heuristics exactly
when there are three candidates and seven or fewer voters. For larger numbers of
voters, we generate 1,000,000 pairs of random profiles, and for each pair, we check
for an edge between the two profiles. Checking for edges is a quick operation and we
are only limited by the number of edges we wish to sample. Sampling nodes is more
difficult because after first choosing a random node, we must check all other nodes to
see if an edge exists. This is bounded byO(m!n). To make the process more efficient,
we stop checking for neighbors of a node once we find the first one. As we will see in
the next section, since the edges are sparse, we check most ofthe nodes. Because of
this, the node ratio is computed with 1000 samples.

In order to compute the domain restriction, we tested four different heuristics for
domain restriction (minimum degree, maximum degree, random edge, and random
node) because the NP-Complete nature of this problem made itimpossible to compute
exactly. In our results section, we include the results fromthe best heuristic—the
minimum degree. This heuristic iteratively removes all theneighbors of the node with
the minimum degree. The results of this heuristic are guaranteed to be an upper bound
for the optimal minimum domain restriction.

To give the reader a sense of what the violation graphs look like and their wildly
varying structure, we include a sample of them for three candidates and two, three, and
four voters, in Figures 1, 2 and 3. Note that we only depict thenodes with degree one
or greater. We include these small cases since the graphs aresuggestive of emerging
structures. However, our experimental results that followrefer to the coarser measures
of domain restriction and edge and node ratios.

3

27

28

4

9

10
13

17

23

19

20

14

(a) Plurality (=Plur. w/ Runoff)

3

4

6

10

12

11

13

19

20

31

32

23
24

26

28
34

(b) Borda (= Copeland)

3

28

4

9

10

13

23

14

17

19

20

27

(c) Maxmin

Figure 1: Violation Graphs for Two Voters and Three Candidates

5.1 Edge Ratio Results

In Figure 4, we graph the comparative behavior of the voting rules we tested. There are
two key take-aways from the graphs. First, the evidence suggests that as the number
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Figure 2: Violation Graphs for Three Voters and Three Candidates

of voters grows, the edge ratio goes to zero for all the votingrules we tested. As we
will prove for scoring rules in Section 6, this ratio does in fact converge to zero as
the number of voters grows to infinity. The second key point isthat pairwise voting
rules (Copeland and Maxmin) perform better than scoring rules (Plurality, Borda, and
Plurality with Runoff) for all numbers of voters. Between the pairwise rules, Maxmin
performs better than Copeland by a small amount. We do not show the graphs for
other numbers of candidates due to space reasons, but these relationships also hold for
candidates up to at least 20.

In addition, the data also shows another relationship. Whenfixing the number of
voters as we increase the number of candidates, the edge ratio also goes to zero. In
Figure 5, the edge ratio converges, but it does so at a slower rate than when we fix the
number of candidates and increase the number of voters.

5.2 Node Ratio Results

In Figure 6, we graph the node ratio for Borda, Plurality, Plurality with run-off, Copeland,
and Maxmin. In contrast to our edge results, as the number of voters increases, the node
ratio increases. A more striking comparison is that in previous work on the node ratio
for strategy-proofness it was shown empirically and theoretically that the node ratio
goes to zero as the number of voters increases. From this we can see that even though
the existence of at least one violation of strategy-proofness is equivalent to the exis-
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(a) Plurality (b) Copeland

Figure 3: Violation Graphs for Four Voters and Three Candidates

tence of at least one violation of monotonicity on the unrestricted domain, the actual
node ratio for the two axioms is different, and may converge to opposite values. We
will see in the next section a closer look into the meaning of the node ratio by means
of the domain restriction heuristic.

We also note that according to the node ratio, pairwise rulesare better than scor-
ing rules. This is not surprising since pairwise rules such as Copeland and Maxmin
are well-known as extensions ofCondorcet procedures, which choose the Condorcet
winner when it exists. One can verify that among any pair of profiles where Condorcet
winners exist, there are no monotonic violation.

5.3 Domain Restriction Results

Domain restriction is the final metric we will examine. This allows us to refine our
results on the node ratio. If a voting rule has a high node ratio but only very few nodes
need to be removed to disconnect the graph (restrict the domain so that no violations
occur), then the high node ratio is an artifact of a few central and well-connected nodes.
If we can prohibit these profiles from occurring in practice,or we can rule them out
due to low probability, a voting rule with a high node ratio but a low domain restriction
might be considered a good voting rule.

Looking at the data, we find that pairwise rules are better than scoring rules, as can
been seen in Figure 7. Although the node ratio of Copeland is lower than Maxmin,
the structure of the graphs are such that Maxmin scores lowerthan Copeland using our
domain restriction techniques. This can be seen in a small example by looking at the
violation graphs of Maxmin in Figure 1(c), where by only deleting the two centered
nodes, all the violation edges are eliminated.

Most importantly, even though the node ratio increases rapidly as the number of
voters increases, most nodes do not need to be removed from the graph, and the pro-
portion of nodes that needs to be removed tends toward zero for all the voting rules we
tested.
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Figure 4: Comparative Edge Ratio Results for Three Candidates (Two views of the
same data)

6 Asymptotic Results

We can see from our experimental results that by fixing the number of candidates and
increasing the number of voters, the ratio of violation edges decreases. One may start
to wonder: does this ratio converge, and if so, what is the limit? We prove in this
section that this ratio converges to 0 whenn → 0.

Suppose the number of violation edges for some scoring rulesis V E(n, m) and the
number of violation nodes isV N(n, m), where the number of all possible edges and
nodes isE(n, m) andN(n, m).

Our start point is a known result of Slinko[28] concerning the number of unstable3

3A profile is unstable if a unilateral deviation from one votercan lead to the change of outcome.
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Figure 6: Comparative Node Ratio Results for Three Candidates

profilesU(n, m). Let L(n, m) = U(n,m)
N(n,m) .

Theorem 1 (from Slinko [28])

dm√
n
≤ L(n, m) ≤ Dm√

n
,

wheredm andDm are constants that depend only onm.

Theorem 2 Whenn → ∞, we have

• limn→∞
V E(n,m)
E(n,m) = 0,

• limn→∞
V N(n,m)
N(n,m) = c, where0 ≤ c ≤ 1.
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Figure 7: Proportion of Nodes Removed with Domain Restriction for Three Candidates

Let C(n, m) be the number of all profile> in {1, . . . , n} such that when adding
a vote>n+1 from an additional votern + 1, the outcome will be changed. Then the
following lemma holds:

Lemma 1 C(n,m)
N(n,m) = L(n + 1, m) ≤ Dm√

n+1
.

Proof: Suppose> is a profile in{1, . . . , n} such that when adding a vote>n+1

(note that there arem! possible>n+1) from an additional votern+1, the outcome will
be changed. It is easy to see that(>, >n+1) is an unstable profile in{1, . . . , n, n + 1}
and all the unstable profiles in{1, . . . , n, n + 1} can be generated from such>. We
have

C(n, m) =
U(n + 1, m)

m!
=

L(n + 1, m)N(n + 1, m)

m!
= L(n + 1, m)N(n, m).

Thus, according to Theorem 1, we have

C(n, m)

N(n, m)
= L(n + 1, m) ≤ Dm√

n + 1
.

Thus whenn → ∞, the probability that “adding an additional vote to a random
profile changes the outcome” is 0.

Proof: (Theorem 2)

• We now prove the first part of Theorem 2, the edge ratio. Suppose otherwise,
there are two possibilities:limn→∞

V E(n,m)
E(n,m) 6= 0 or V E(n,m)

E(n,m) does not con-
verge. Either way, we haveV E(n, m) = cE(n, m) for c 6= 0 for some suffi-
ciently largen. One can prove this impliesV N(n, m) = c′N(n, m) for c′ 6= 0.
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Now consider a monotonic violation forn voters where for voting rulef we
havef(>′) = a, f(>′′) = b 6= a and>′′ is an improvement of>′ w.r.t a. When
adding an additional votern + 1, by the comments following Lemma 1, we
know thatf(>′, >′

n+1) = a andf(>′′, >′′
n+1) = b (there are a small proportion

of profiles that change the outcome, but this reduces the amount of violations).
Further,(>′′, >′′

n+1) is still monotonic from(>′, >′
n+1) only if the rank ofa in

>′′
n+1 is at least the same as in>′

n+1. The number of such pairs(>′
n+1, >

′′
n+1)

is strictly less than(m!)2, the factor by which the number of edges increases
from n voters ton + 1 voters.

The other case that can generate monotonic violation withn + 1 voters is when
a previous pair of profiles without violation now becomes oneby adding voter

n + 1. One can count that the number of such pairs is at most(2Dm√
n

+
D2

m

n
)(1−

c)E(n, m)(m!)2. Clearly, its ratio toE(n + 1, m) goes to 0 asn → ∞.

To sum up, we haveV E(n+1,m)
E(n+1,m) = c′′ V E(n,m)

E(n,m) for sufficiently largen and some

0 < c′′ < 1, which leads tolimn→∞
V E(n,m)
E(n,m) = 0, a contradiction.

• Similarly, for the node ratio, consider a monotonic violation for n voters where
for voting rulef we havef(>′) = a, f(>′′) = b 6= a and>′′ is an improvement
of >′ w.r.t a. When adding an additional votern + 1, we still have thatf(>′

, >′
n+1) = a andf(>′′, >′′

n+1) = b (with a small proportion of deviations which
tends to 0 divided by the number of all profiles). We now prove that, for such a
violation node>′ for n voters,(>′, >′

n+1) is a violation node for any>′
n+1 for

n + 1 voters. In other words, we only need to prove that for any>′
n+1, we can

find its monotonic improvement>′′
n+1 w.r.t a. This can be easily achieved by

fixing the ranking ofa and permuting other candidates. similarly, we can prove
that for such a violation node>′′ for n voters,(>′′, >′′

n+1) is still a violation
node for any>′′

n+1, since this amount to say that we can find some vote that can
be improved to>′′

n+1 w.r.t to a. Thus, we conclude that for any violation node
for n voters, we can generatem! violation nodes corresponding to it forn + 1
voters.

The same as the edge ratio, the other case that can generate monotonic violation
with n + 1 voters is when a previous pair of profiles without violation now be-
comes one by adding votern + 1. However we can similarly exclude this since
this proportion tends to 0.

To sum up,V N(n+1,m)
N(n+1,m) = m!V N(n,m)

m!N(n,m) = V N(n,m)
N(n,m) for sufficiently largen,

which leads tolimn→∞
V N(n,m)
N(n,m) = c for some constantc.

7 Conclusion and Future Work

The contribution of this paper is two-fold. First, we offer anew viewpoint on the
comparative analysis of voting rules. Second, we provide empirical results on the
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application of our new approach to Maskin’s monotonicity.
Our results show that pairwise voting rules, like Maxmin andCopeland, are well-

behaved. On the other hand, the commonly used scoring rules of Plurality and Borda
have a higher degree of monotonic violation by all the measures we tested. In addition,
our results show that even though the majority of profiles areinvolved in a monotonic
violation (the node ratio is increasing in voters), the violations can be eliminated by
removing a small proportion of profiles. This domain restriction is not only very low,
but it also tends to zero as the number of voters increase. Finally, our asymptotic results
provide the first proof of the asymptotic behavior of the edgeratio, which goes to zero
as the number of voters increases, and also show that the noderatio converges.

One future direction is to prove a tight bound on the node ratio when the number
of voters tends to infinity and also prove a bound on the edge ratio as the number
of candidates tends to infinity. We are also investigating how voting rules behave with
respect to the violation of the conjunction (disjunction) of two or more axioms. Finally,
the most promising direction is going beyond the metrics of node and edge ratios and
leveraging the richer structure (seen in Figures 1, 2, and 3)of the violation graph itself.
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