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ABSTRACT
We present a new approach to representing coalitional games
based on rules that describe the marginal contributions of
the agents. This representation scheme captures character-
istics of the interactions among the agents in a natural and
concise manner. We also develop efficient algorithms for two
of the most important solution concepts, the Shapley value
and the core, under this representation. The Shapley value
can be computed in time linear in the size of the input. The
emptiness of the core can be determined in time exponen-
tial only in the treewidth of a graphical interpretation of our
representation.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems; J.4 [Social and Behavioral Sciences]: Eco-
nomics; F.2 [Analysis of Algorithms and Problem Com-
plexity]

General Terms
Algorithms, Economics

Keywords
Coalitional game theory, Representation, Treewidth

1. INTRODUCTION
Agents can often benefit by coordinating their actions.

Coalitional games capture these opportunities of coordina-
tion by explicitly modeling the ability of the agents to take
joint actions as primitives. As an abstraction, coalitional
games assign a payoff to each group of agents in the game.
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This payoff is intended to reflect the payoff the group of
agents can secure for themselves regardless of the actions
of the agents not in the group. These choices of primitives
are in contrast to those of non-cooperative games, of which
agents are modeled independently, and their payoffs depend
critically on the actions chosen by the other agents.

1.1 Coalitional Games and E-Commerce
Coalitional games have appeared in the context of e-com-

merce. In [7], Kleinberg et al. use coalitional games to study
recommendation systems. In their model, each individual
knows about a certain set of items, is interested in learning
about all items, and benefits from finding out about them.
The payoffs to groups of agents are the total number of dis-
tinct items known by its members. Given this coalitional
game setting, Kleinberg et al. compute the value of the pri-
vate information of the agents is worth to the system using
the solution concept of the Shapley value (definition can be
found in section 2). These values can then be used to deter-
mine how much each agent should receive for participating
in the system.

As another example, consider the economics behind sup-
ply chain formation. The increased use of the Internet as a
medium for conducting business has decreased the costs for
companies to coordinate their actions, and therefore coali-
tional game is a good model for studying the supply chain
problem. Suppose that each manufacturer purchases his raw
materials from some set of suppliers, and that the suppliers
offer higher discount with more purchases. The decrease in
communication costs will let manufacturers find others in-
terested in the same set of suppliers cheaper, and facilitates
formation of coalitions to bargain with the suppliers. De-
pending on the set of suppliers and how much from each
supplier each coalition purchases, we can assign payoffs to
the coalitions depending on the discount it receives. The
resulting game can be analyzed using coalitional game the-
ory, and we can answer questions such as the stability of
coalitions, and how to fairly divide the benefits among the
participating manufacturers. A similar problem, combina-
torial coalition formation, has previously been studied in [8].

1.2 Evaluation Criteria for Coalitional Game
Representation

To capture the coalitional games described above and per-
form computations on them, we must first find a represen-
tation for these games. The näıve solution is to enumerate
the payoffs to each set of agents, therefore requiring space



exponential in the number of agents in the game. For the
two applications described, the number of agents in the sys-
tem can easily exceed a hundred; this näıve approach will
not be scalable to such problems. Therefore, it is critical to
find good representation schemes for coalitional games.

We believe that the quality of a representation scheme
should be evaluated by four criteria.

Expressivity: the breadth of the class of coalitional games
covered by the representation.

Conciseness: the space requirement of the representation.

Efficiency: the efficiency of the algorithms we can develop
for the representation.

Simplicity: the ease of use of the representation by users
of the system.

The ideal representation should be fully expressive, i.e., it
should be able to represent any coalitional games, use as
little space as possible, have efficient algorithms for com-
putation, and be easy to use. The goal of this paper is to
develop a representation scheme that has properties close to
the ideal representation.

Unfortunately, given that the number of degrees of free-
dom of coalitional games is O(2n), not all games can be rep-
resented concisely using a single scheme due to information
theoretic constraints. For any given class of games, one may
be able to develop a representation scheme that is tailored
and more compact than a general scheme. For example, for
the recommendation system game, a highly compact repre-
sentation would be one that simply states which agents know
of which products, and let the algorithms that operate on
the representation to compute the values of coalitions ap-
propriately. For some problems, however, there may not be
efficient algorithms for customized representations. By hav-
ing a general representation and efficient algorithms that go
with it, the representation will be useful as a prototyping
tool for studying new economic situations.

1.3 Previous Work
The question of coalitional game representation has only

been sparsely explored in the past [2, 3, 4]. In [4], Deng
and Papadimitriou focused on the complexity of different
solution concepts on coalitional games defined on graphs.
While the representation is compact, it is not fully expres-
sive. In [2], Conitzer and Sandholm looked into the problem
of determining the emptiness of the core in superadditive
games. They developed a compact representation scheme
for such games, but again the representation is not fully ex-
pressive either. In [3], Conitzer and Sandholm developed a
fully expressive representation scheme based on decomposi-
tion. Our work extends and generalizes the representation
schemes in [3, 4] through decomposing the game into a set of
rules that assign marginal contributions to groups of agents.
We will give a more detailed review of these papers in section
2.2 after covering the technical background.

1.4 Summary of Our Contributions

• We develop the marginal contribution networks rep-
resentation, a fully expressive representation scheme
whose size scales according to the complexity of the
interactions among the agents. We believe that the
representation is also simple and intuitive.

• We develop an algorithm for computing the Shapley
value of coalitional games under this representation
that runs in time linear in the size of the input.

• Under the graphical interpretation of the represen-
tation, we develop an algorithm for determining the
whether a payoff vector is in the core and the emptiness
of the core in time exponential only in the treewidth
of the graph.

2. PRELIMINARIES
In this section, we will briefly review the basics of coali-

tional game theory and its two primary solution concepts,
the Shapley value and the core.1 We will also review previ-
ous work on coalitional game representation in more detail.
Throughout this paper, we will assume that the payoff to
a group of agents can be freely distributed among its mem-
bers. This assumption is often known as the transferable
utility assumption.

2.1 Technical Background
We can represent a coalition game with transferable utility

by the pair 〈N, v〉, where

• N is the set of agents; and

• v : 2N 7→ R is a function that maps each group of
agents S ⊆ N to a real-valued payoff.

This representation is known as the characteristic form. As
there are exponentially many subsets, it will take space ex-
ponential in the number of agents to describe a coalitional
game.

An outcome in a coalitional game specifies the utilities
the agents receive. A solution concept assigns to each coali-
tional game a set of “reasonable” outcomes. Different so-
lution concepts attempt to capture in some way outcomes
that are stable and/or fair. Two of the best known solution
concepts are the Shapley value and the core.

The Shapley value is a normative solution concept. It
prescribes a “fair” way to divide the gains from cooperation
when the grand coalition (i.e., N) is formed. The division
of payoff to agent i is the average marginal contribution of
agent i over all possible permutations of the agents. For-
mally, let φi(v) denote the Shapley value of i under charac-
teristic function v, then2

φi(v) =
∑
S⊂N

s!(n− s− 1)!

n!
(v(S ∪ {i})− v(S)) (1)

The Shapley value is a solution concept that satisfies many
nice properties, and has been studied extensively in the eco-
nomic and game theoretic literature. It has a very useful
axiomatic characterization.

Efficiency (EFF) A total of v(N) is distributed to the
agents, i.e.,

∑
i∈N φi(v) = v(N).

Symmetry (SYM) If agents i and j are interchangeable,
then φi(v) = φj(v).

1The materials and terminology are based on the textbooks
by Mas-Colell et al. [9] and Osborne and Rubinstein [11].
2As a notational convenience, we will use the lower-case let-
ter to represent the cardinality of a set denoted by the cor-
responding upper-case letter.



Dummy (DUM) If agent i is a dummy player, i.e., his
marginal contribution to all groups S are the same,
φi(v) = v({i}).

Additivity (ADD) For any two coalitional games v and
w defined over the same set of agents N , φi(v + w) =
φi(v) + φi(w) for all i ∈ N , where the game v + w is
defined as (v + w)(S) = v(S) + w(S) for all S ⊆ N .

We will refer to these axioms later in our proof of correctness
of the algorithm for computing the Shapley value under our
representation in section 4.

The core is another major solution concept for coalitional
games. It is a descriptive solution concept that focuses on
outcomes that are “stable.” Stability under core means that
no set of players can jointly deviate to improve their payoffs.
Formally, let x(S) denote

∑
i∈S xi. An outcome x ∈ Rn is

in the core if

∀S ⊆ N x(S) ≥ v(S) (2)

The core was one of the first proposed solution concepts
for coalitional games, and had been studied in detail. An
important question for a given coalitional game is whether
the core is empty. In other words, whether there is any
outcome that is stable relative to group deviation. For a
game to have a non-empty core, it must satisfy the property
of balancedness, defined as follows. Let 1S ∈ Rn denote the
characteristic vector of S given by

(1S)i =

{
1 if i ∈ S

0 otherwise

Let (λS)S⊆N be a set of weights such that each λS is in the
range between 0 and 1. This set of weights, (λS)S⊆N , is a
balanced collection if for all i ∈ N ,

∑

S⊆N

λS(1S)i = 1

A game is balanced if for all balanced collections of weights,
∑

S⊆N

λSv(S) ≤ v(N) (3)

By the Bondereva-Shapley theorem, the core of a coali-
tional game is non-empty if and only if the game is bal-
anced. Therefore, we can use linear programming to deter-
mine whether the core of a game is empty.

maximize
λ∈R2n

∑
S⊆N λSv(S)

subject to
∑

S⊆N λS1S = 1 ∀i ∈ N

λS ≥ 0 ∀S ⊆ N

(4)

If the optimal value of (4) is greater than the value of the
grand coalition, then the core is empty. Unfortunately, this
program has an exponential number of variables in the num-
ber of players in the game, and hence an algorithm that oper-
ates directly on this program would be infeasible in practice.
In section 5.4, we will describe an algorithm that answers
the question of emptiness of core that works on the dual of
this program instead.

2.2 Previous Work Revisited
Deng and Papadimitriou looked into the complexity of

various solution concepts on coalitional games played on
weighted graphs in [4]. In their representation, the set of

agents are the nodes of the graph, and the value of a set of
agents S is the sum of the weights of the edges spanned by
them. Notice that this representation is concise since the
space required to specify such a game is O(n2). However,
this representation is not general; it will not be able to repre-
sent interactions among three or more agents. For example,
it will not be able to represent the majority game, where a
group of agents S will have value of 1 if and only if s > n/2.
On the other hand, there is an efficient algorithm for com-
puting the Shapley value of the game, and for determining
whether the core is empty under the restriction of positive
edge weights. However, in the unrestricted case, determin-
ing whether the core is non-empty is coNP-complete.

Conitzer and Sandholm in [2] considered coalitional games
that are superadditive. They described a concise represen-
tation scheme that only states the value of a coalition if the
value is strictly superadditive. More precisely, the semantics
of the representation is that for a group of agents S,

v(S) = max
{T1,T2,...,Tn}∈Π

∑
i

v(Ti)

where Π is the set of all possible partitions of S. The value
v(S) is only explicitly specified for S if v(S) is greater than
all partitioning of S other than the trivial partition ({S}).
While this representation can represent all games that are
superadditive, there are coalitional games that it cannot rep-
resent. For example, it will not be able to represent any
games with substitutability among the agents. An exam-
ple of a game that cannot be represented is the unit game,
where v(S) = 1 as long as S 6= ∅. Under this representa-
tion, the authors showed that determining whether the core
is non-empty is coNP-complete. In fact, even determining
the value of a group of agents is NP-complete.

In a more recent paper, Conitzer and Sandholm described
a representation that decomposes a coalitional game into a
number of subgames whose sum add up to the original game
[3]. The payoffs in these subgames are then represented by
their respective characteristic functions. This scheme is fully
general as the characteristic form is a special case of this
representation. For any given game, there may be multiple
ways to decompose the game, and the decomposition may
influence the computational complexity. For computing the
Shapley value, the authors showed that the complexity is
linear in the input description; in particular, if the largest
subgame (as measured by number of agents) is of size n and
the number of subgames is m, then their algorithm runs
in O(m2n) time, where the input size will also be O(m2n).
On the other hand, the problem of determining whether a
certain outcome is in the core is coNP-complete.

3. MARGINAL CONTRIBUTION NETS
In this section, we will describe the Marginal Contribution

Networks representation scheme. We will show that the idea
is flexible, and we can easily extend it to increase its con-
ciseness. We will also show how we can use this scheme to
represent the recommendation game from the introduction.
Finally, we will show that this scheme is fully expressive,
and generalizes the representation schemes in [3, 4].

3.1 Rules and Marginal Contribution Networks
The basic idea behind marginal contribution networks

(MC-nets) is to represent coalitional games using sets of
rules. The rules in MC-nets have the following syntactic



form:

Pattern → value

A rule is said to apply to a group of agents S if S meets
the requirement of the Pattern. In the basic scheme, these
patterns are conjunctions of agents, and S meets the re-
quirement of the given pattern if S is a superset of it. The
value of a group of agents is defined to be the sum over the
values of all rules that apply to the group. For example, if
the set of rules are

{a ∧ b} → 5

{b} → 2

then v({a}) = 0, v({b}) = 2, and v({a, b}) = 5 + 2 = 7.
MC-nets is a very flexible representation scheme, and can

be extended in different ways. One simple way to extend
it and increase its conciseness is to allow a wider class of
patterns in the rules. A pattern that we will use throughout
the remainder of the paper is one that applies only in the
absence of certain agents. This is useful for expressing con-
cepts such as substitutability or default values. Formally,
we express such patterns by

{p1 ∧ p2 ∧ . . . ∧ pm ∧ ¬n1 ∧ ¬n2 ∧ . . . ∧ ¬nn}
which has the semantics that such rule will apply to a group
S only if {pi}m

i=1 ∈ S and {nj}n
j=1 /∈ S. We will call

the {pi}m
i=1 in the above pattern the positive literals, and

{nj}n
j=1 the negative literals. Note that if the pattern of

a rule consists solely of negative literals, we will consider
that the empty set of agents will also satisfy such pattern,
and hence v(∅) may be non-zero in the presence of negative
literals.

To demonstrate the increase in conciseness of representa-
tion, consider the unit game described in section 2.2. To
represent such a game without using negative literals, we
will need 2n rules for n players: we need a rule of value 1
for each individual agent, a rule of value −1 for each pair of
agents to counter the double-counting, a rule of value 1 for
each triplet of agents, etc., similar to the inclusion-exclusion
principle. On the other hand, using negative literals, we
only need n rules: value 1 for the first agent, value 1 for the
second agent in the absence of the first agent, value 1 for the
third agent in the absence of the first two agents, etc. The
representational savings can be exponential in the number
of agents.

Given a game represented as a MC-net, we can interpret
the set of rules that make up the game as a graph. We call
this graph the agent graph. The nodes in the graph will rep-
resent the agents in the game, and for each rule in the MC-
net, we connect all the agents in the rule together and assign
a value to the clique formed by the set of agents. Notice that
to accommodate negative literals, we will need to annotate
the clique appropriately. This alternative view of MC-nets
will be useful in our algorithm for Core-Membership in
section 5.

We would like to end our discussion of the representation
scheme by mentioning a trade-off between the expressive-
ness of patterns and the space required to represent them.
To represent a coalitional game in characteristic form, one
would need to specify all 2n − 1 values. There is no over-
head on top of that since there is a natural ordering of the
groups. For MC-nets, however, specification of the rules

requires specifying both the patterns and the values. The
patterns, if not represented compactly, may end up over-
whelming the savings from having fewer values to specify.
The space required for the patterns also leads to a trade-
off between the expressiveness of the allowed patterns and
the simplicity of representing them. However, we believe
that for most naturally arising games, there should be suffi-
cient structure in the problem such that our representation
achieves a net saving over the characteristic form.

3.2 Example: Recommendation Game
As an example, we will use MC-net to represent the rec-

ommendation game discussed in the introduction. For each
product, as the benefit of knowing about the product will
count only once for each group, we need to capture sub-
stitutability among the agents. This can be captured by a
scaled unit game. Suppose the value of the knowledge about
product i is vi, and there are ni agents, denoted by {xj

i},
who know about the product, the game for product i can
then be represented as the following rules:

{x1
i } → vi

{x2
i ∧ ¬x1

i } → vi

...

{xni
i ∧ ¬xni−1

i ∧ · · · ∧ ¬x1
i } → vi

The entire game can then be built up from the sets of rules
of each product. The space requirement will be O(mn∗),
where m is the number of products in the system, and n∗

is the maximum number of agents who knows of the same
product.

3.3 Representation Power
We will discuss the expressiveness and conciseness of our

representation scheme and compare it with the previous
works in this subsection.

Proposition 1. Marginal contribution networks consti-
tute a fully expressive representation scheme.

Proof. Consider an arbitrary coalitional game 〈N, v〉 in
characteristic form representation. We can construct a set
of rules to describe this game by starting from the singleton
sets and building up the set of rules. For any singleton set
{i}, we create a rule {i} → v(i). For any pair of agents {i, j},
we create a rule {i ∧ j} → v({i, j}) − v({i}) − v({j}. We
can continue to build up rules in a manner similar to the
inclusion-exclusion principle. Since the game is arbitrary,
MC-nets are fully expressive.

Using the construction outlined in the proof, we can show
that our representation scheme can simulate the multi-issue
representation scheme of [3] in almost the same amount of
space.

Proposition 2. Marginal contribution networks use at
most a linear factor (in the number of agents) more space
than multi-issue representation for any game.

Proof. Given a game in multi-issue representation, we
start by describing each of the subgames, which are rep-
resented in characteristic form in [3], with a set of rules.



We then build up the grand game by including all the rules
from the subgames. Note that our representation may re-
quire a space larger by a linear factor due to the need to
describe the patterns for each rule. On the other hand, our
approach may have fewer than exponential number of rules
for each subgame, depending on the structure of these sub-
games, and therefore may be more concise than multi-issue
representation.

On the other hand, there are games that require exponen-
tially more space to represent under the multi-issue scheme
compared to our scheme.

Proposition 3. Marginal contribution networks are ex-
ponentially more concise than multi-issue representation for
certain games.

Proof. Consider a unit game over all the agents N . As
explained in 3.1, this game can be represented in linear space
using MC-nets with negative literals. However, as there is
no decomposition of this game into smaller subgames, it will
require space O(2n) to represent this game under the multi-
issue representation.

Under the agent graph interpretation of MC-nets, we can
see that MC-nets is a generalization of the graphical repre-
sentation in [4], namely from weighted graphs to weighted
hypergraphs.

Proposition 4. Marginal contribution networks can rep-
resent any games in graphical form (under [4]) in the same
amount of space.

Proof. Given a game in graphical form, G, for each edge
(i, j) with weight wij in the graph, we create a rule {i, j} →
wij . Clearly this takes exactly the same space as the size of
G, and by the additive semantics of the rules, it represents
the same game as G.

4. COMPUTING THE SHAPLEY VALUE
Given a MC-net, we have a simple algorithm to compute

the Shapley value of the game. Considering each rule as a
separate game, we start by computing the Shapley value of
the agents for each rule. For each agent, we then sum up
the Shapley values of that agent over all the rules. We first
show that this final summing process correctly computes the
Shapley value of the agents.

Proposition 5. The Shapley value of an agent in a marginal
contribution network is equal to the sum of the Shapley val-
ues of that agent over each rule.

Proof. For any group S, under the MC-nets representa-
tion, v(S) is defined to be the sum over the values of all the
rules that apply to S. Therefore, considering each rule as a
game, by the (ADD) axiom discussed in section 2, the Shap-
ley value of the game created from aggregating all the rules
is equal to the sum of the Shapley values over the rules.

The remaining question is how to compute the Shapley
values of the rules. We can separate the analysis into two
cases, one for rules with only positive literals and one for
rules with mixed literals.

For rules that have only positive literals, the Shapley value
of the agents is v/m, where v is the value of the rule and

m is the number of agents in the rule. This is a direct
consequence of the (SYM) axiom of the Shapley value, as
the agents in a rule are indistinguishable from each other.

For rules that have both positive and negative literals, we
can consider the positive and the negative literals separately.
For a given positive literal i, the rule will apply only if i
occurs in a given permutation after the rest of the positive
literals but before any of the negative literals. Formally, let
φi denote the Shapley value of i, p denote the cardinality of
the positive set, and n denote the cardinality of the negative
set, then

φi =
(p− 1)!n!

(p + n)!
v =

v

p
(

p+n
n

)

For a given negative literal j, j will be responsible for can-
celling the application of the rule if all positive literals come
before the negative literals in the ordering, and j is the first
among the negative literals. Therefore,

φj =
p!(n− 1)!

(p + n)!
(−v) =

−v

n
(

p+n
p

)

By the (SYM) axiom, all positive literals will have the value
of φi and all negative literals will have the value of φj .

Note that the sum over all agents in rules with mixed
literals is 0. This is to be expected as these rules contribute
0 to the grand coalition. The fact that these rules have no
effect on the grand coalition may appear odd at first. But
this is because the presence of such rules is to define the
values of coalitions smaller than the grand coalition.

In terms of computational complexity, given that the Shap-
ley value of any agent in a given rule can be computed in
time linear in the pattern of the rule, the total running time
of the algorithm for computing the Shapley value of the
game is linear in the size of the input.

5. ANSWERING CORE-RELATED
QUESTIONS

There are a few different but related computational prob-
lems associated with the solution concept of the core. We
will focus on the following two problems:

Definition 1. (Core-Membership) Given a coalitional game
and a payoff vector x, determine if x is in the core.

Definition 2. (Core-Non-Emptiness) Given a coalitional
game, determine if the core is non-empty.

In the rest of the section, we will first show that these
two problems are coNP-complete and coNP-hard respec-
tively, and discuss some complexity considerations about
these problems. We will then review the main ideas of tree
decomposition as it will be used extensively in our algorithm
for Core-Membership. Next, we will present the algorithm
for Core-Membership, and show that the algorithm runs
in polynomial time for graphs of bounded treewidth. We end
by extending this algorithm to answer the question of Core-
Non-Emptiness in polynomial time for graphs of bounded
treewidth.

5.1 Computational Complexity
The hardness of Core-Membership and Core-Non-

Emptiness follows directly from the hardness results of games
over weighted graphs in [4].



Proposition 6. Core-Membership for games represented
as marginal contribution networks is coNP-complete.

Proof. Core-Membership in MC-nets is in the class
of coNP since any set of agents S of which v(S) > x(S)
will serve as a certificate to show that x does not belong to
the core. As for its hardness, given any instance of Core-
Membership for a game in graphical form of [4], we can
encode the game in exactly the same space using MC-net
due to Proposition 4. Since Core-Membership for games
in graphical form is coNP-complete, Core-Membership in
MC-nets is coNP-hard.

Proposition 7. Core-Non-Emptiness for games rep-
resented as marginal contribution networks is coNP-hard.

Proof. The same argument for hardness between games
in graphical frm and MC-nets holds for the problem of Core-
Non-Emptiness.

We do not know of a certificate to show that Core-Non-
Emptiness is in the class of coNP as of now. Note that
the “obvious” certificate of a balanced set of weights based
on the Bondereva-Shapley theorem is exponential in size. In
[4], Deng and Papadimitriou showed the coNP-completeness
of Core-Non-Emptiness via a combinatorial characteri-
zation, namely that the core is non-empty if and only if
there is no negative cut in the graph. In MC-nets, however,
there need not be a negative hypercut in the graph for the
core to be empty, as demonstrated by the following game
(N = {1, 2, 3, 4}):

v(S) =





1 if S = {1, 2, 3, 4}
3/4 if S = {1, 2}, {1, 3}, {1, 4}, or {2, 3, 4}
0 otherwise

(5)

Applying the Bondereva-Shapley theorem, if we let λ12 =
λ13 = λ14 = 1/3, and λ234 = 2/3, this set of weights demon-
strates that the game is not balanced, and hence the core
is empty. On the other hand, this game can be represented
with MC-nets as follows (weights on hyperedges):

w({1, 2}) = w({1, 3}) = w({1, 4}) = 3/4

w({1, 2, 3}) = w({1, 2, 4}) = w({1, 3, 4}) = −6/4

w({2, 3, 4}) = 3/4

w({1, 2, 3, 4}) = 10/4

No matter how the set is partitioned, the sum over the
weights of the hyperedges in the cut is always non-negative.

To overcome the computational hardness of these prob-
lems, we have developed algorithms that are based on tree
decomposition techniques. For Core-Membership, our al-
gorithm runs in time exponential only in the treewidth of the
agent graph. Thus, for graphs of small treewidth, such as
trees, we have a tractable solution to determine if a payoff
vector is in the core. By using this procedure as a sepa-
ration oracle, i.e., a procedure for returning the inequality
violated by a candidate solution, to solving a linear pro-
gram that is related to Core-Non-Emptiness using the el-
lipsoid method, we can obtain a polynomial time algorithm
for Core-Non-Emptiness for graphs of bounded treewidth.

5.2 Review of Tree Decomposition
As our algorithm for Core-Membership relies heavily

on tree decomposition, we will first briefly review the main
ideas in tree decomposition and treewidth.3

Definition 3. A tree decomposition of a graph G = (V, E)
is a pair (X , T ), where T = (I, F ) is a tree and X = {Xi | i ∈
I} is a family of subsets of V , one for each node of T , such
that

• ⋃
i∈I Xi = V ;

• For all edges (v, w) ∈ E, there exists an i ∈ I with
v ∈ Xi and w ∈ Xi; and

• (Running Intersection Property) For all i, j, k ∈ I: if j
is on the path from i to k in T , then Xi ∩Xk ⊆ Xj .

The treewidth of a tree decomposition is defined as the max-
imum cardinality over all sets in X , less one. The treewidth
of a graph is defined as the minimum treewidth over all tree
decompositions of the graph.

Given a tree decomposition, we can convert it into a nice
tree decomposition of the same treewidth, and of size linear
in that of T .

Definition 4. A tree decomposition T is nice if T is rooted
and has four types of nodes:

Leaf nodes i are leaves of T with |Xi| = 1.

Introduce nodes i have one child j such that Xi = Xj ∪
{v} of some v ∈ V .

Forget nodes i have one child j such that Xi = Xj \ {v}
for some v ∈ Xj .

Join nodes i have two children j and k with Xi = Xj =
Xk.

An example of a (partial) nice tree decomposition together
with a classification of the different types of nodes is in Fig-
ure 1. In the following section, we will refer to nodes in the
tree decomposition as nodes, and nodes in the agent graph
as agents.

5.3 Algorithm for Core Membership
Our algorithm for Core-Membership takes as an input

a nice tree decomposition T of the agent graph and a payoff
vector x. By definition, if x belongs to the core, then for
all groups S ⊆ N , x(S) ≥ v(S). Therefore, the difference
x(S)−v(S) measures how “close” the group S is to violating
the core condition. We call this difference the excess of group
S.

Definition 5. The excess of a coalition S, e(S), is defined
as x(S)− v(S).

A brute-force approach to determine if a payoff vector be-
longs to the core will have to check that the excesses of all
groups are non-negative. However, this approach ignores the
structure in the agent graph that will allow an algorithm to
infer that certain groups have non-negative excesses due to

3This is based largely on the materials from a survey paper
by Bodlaender [1].
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Figure 1: Example of a (partial) nice tree decompo-
sition

the excesses computed elsewhere in the graph. Tree decom-
position is the key to take advantage of such inferences in a
structured way.

For now, let us focus on rules with positive literals. Sup-
pose we have already checked that the excesses of all sets
R ⊆ U are non-negative, and we would like to check if the
addition of an agent i to the set U will create a group with
negative excess. A näıve solution will be to compute the
excesses of all sets that include i. The excess of the group
(R ∪ {i}) for any group R can be computed as follows

e(R ∪ {i}) = e(R) + xi − v(c) (6)

where c is the cut between R and i, and v(c) is the sum of
the weights of the edges in the cut.

However, suppose that from the tree decomposition, we
know that i is only connected to a subset of U , say S, which
we will call the entry set to U . Ideally, because i does not
share any edges with members of Ū = (U \ S), we would
hope that an algorithm can take advantage of this structure
by checking only sets that are subsets of (S ∪ {i}). This
computational saving may be possible since (xi−v(c)) in the
update equation of (6) does not depend on Ū . However, we
cannot simply ignore Ū as members of Ū may still influence
the excesses of groups that include agent i through group
S. Specifically, if there exists a group T ⊃ S such that
e(T ) < e(S), then even when e(S ∪ {i}) has non-negative
excess, e(T ∪{i}) may have negative excess. In other words,
the excess available at S may have been “drained” away due
to T . This motivates the definition of the reserve of a group.

Definition 6. The reserve of a coalition S relative to a

coalition U is the minimum excess over all coalitions between
S and U , i.e., all T : S ⊆ T ⊆ U . We denote this value by
r(S, U). We will refer to the group T that has the minimum
excess as arg r(S, U). We will also call U the limiting set of
the reserve and S the base set of the reserve.

Our algorithm works by keeping track of the reserves of
all non-empty subsets that can be formed by the agents of a
node at each of the nodes of the tree decomposition. Starting
from the leaves of the tree and working towards the root,
at each node i, our algorithm computes the reserves of all
groups S ⊆ Xi, limited by the set of agents in the subtree
rooted at i, Ti, except those in (Xi\S). The agents in (Xi\S)
are excluded to ensure that S is an entry set. Specifically,
S is the entry set to ((Ti \Xi) ∪ S).

To accomodate for negative literals, we will need to make
two adjustments. Firstly, the cut between an agent m and a
set S at node i now refers to the cut among agent m, set S,
and set ¬(Xi \ S), and its value must be computed accord-
ingly. Also, when an agent m is introduced to a group at an
introduce node, we will also need to consider the change in
the reserves of groups that do not include m due to possible
cut involving ¬m and the group.

As an example of the reserve values we keep track of at a
tree node, consider node i of the tree in Figure 1. At node
i, we will keep track of the following:

r({1}, {1, 2, . . .})
r({3}, {2, 3, . . .})
r({4}, {2, 4, . . .})
r({1, 3}, {1, 2, 3, . . .})
r({1, 4}, {1, 2, 4, . . .})
r({3, 4}, {2, 3, 4, . . .})
r({1, 3, 4}, {1, 2, 3, 4, . . .}

where the dots . . . refer to the agents rooted under node m.
For notational use, we will use ri(S) to denote r(S, U) at

node i where U is the set of agents in the subtree rooted at
node i excluding agents in (Xi \ S). We sometimes refer to
these values as the r-values of a node. The details of the
r-value computations are in Algorithm 1.

To determine if the payoff vector x is in the core, during
the r-value computation at each node, we can check if all of
the r-values are non-negative. If this is so for all nodes in
the tree, the payoff vector x is in the core. The correctness
of the algorithm is due to the following proposition.

Proposition 8. The payoff vector x is not in the core if
and only if the r-values at some node i for some group S is
negative.

Proof. (⇐) If the reserve at some node i for some group
S is negative, then there exists a coalition T for which
e(T ) = x(T )− v(T ) < 0, hence x is not in the core.

(⇒) Suppose x is not in the core, then there exists some
group R∗ such that e(R∗) < 0. Let Xroot be the set of nodes
at the root. Consider any set S ∈ Xroot, rroot(S) will have
the base set of S and the limiting set of ((N \Xroot) ∪ S).
The union over all of these ranges includes all sets U for
which U ∩ Xroot 6= ∅. Therefore, if R∗ is not disjoint from
Xroot, the r-value for some group in the root is negative.

If R∗ is disjoint from U , consider the forest {Ti} resulting
from removal of all tree nodes that include agents in Xroot.



Algorithm 1 Subprocedures for Core Membership

Leaf-Node(i)
1: ri(Xi) ← e(Xi)

Introduce-Node(i)
2: j ← child of i
3: m ← Xi \Xj {the introduced node}
4: for all S ⊆ Xj , S 6= ∅ do
5: C ← all hyperedges in the cut of m, S, and ¬(Xi \S)
6: ri(S ∪ {x}) ← rj(S) + xm − v(C)
7: C ← all hyperedges in the cut of ¬m, S, and ¬(Xi\S)
8: ri(S) ← rj(S)− v(C)
9: end for

10: r({m}) ← e({m})
Forget-Node(i)
11: j ← child of i
12: m ← Xj \Xi {the forgotten node}
13: for all S ⊆ Xi, S 6= ∅ do
14: ri(S) = min(rj(S), rj(S ∪ {m}))
15: end for

Join-Node(i)
16: {j, k} ← {left, right} child of i
17: for all S ⊆ Xi, S 6= ∅ do
18: ri(S) ← rj(S) + rk(S)− e(S)
19: end for

By the running intersection property, the sets of nodes in
the trees Ti’s are disjoint. Thus, if the set R∗ =

⋃
i Si for

some Si ∈ Ti, e(R∗) =
∑

i e(Si) < 0 implies some group
S∗i has negative excess as well. Therefore, we only need to
check the r-values of the nodes on the individual trees in the
forest.

But for each tree in the forest, we can apply the same
argument restricted to the agents in the tree. In the base
case, we have the leaf nodes of the original tree decomposi-
tion, say, for agent i. If R∗ = {i}, then r({i}) = e({i}) < 0.
Therefore, by induction, if e(R∗) < 0, some reserve at some
node would be negative.

We will next explain the intuition behind the correctness
of the computations for the r-values in the tree nodes. A
detailed proof of correctness of these computations can be
found in the appendix under Lemmas 1 and 2.

Proposition 9. The procedure in Algorithm 1 correctly
compute the r-values at each of the tree nodes.

Proof. (Sketch) We can perform a case analysis over
the four types of tree nodes in a nice tree decomposition.

Leaf nodes (i) The only reserve value to be computed is
ri(Xi), which equals r(Xi, Xi), and therefore it is just
the excess of group Xi.

Forget nodes (i with child j) Let m be the forgotten node.
For any subset S ⊆ Xi, arg ri(S) must be chosen be-
tween the groups of S and S ∪ {m}, and hence we
choose between the lower of the two from the r-values
at node j.

Introduce nodes (i with child j) Let m be the introduced
node. For any subset T ⊆ Xi that includes m, let S
denote (T \ {m}). By the running intersection prop-
erty, there are no rules that involve m and agents of

the subtree rooted at node i except those involving
m and agents in Xi. As both the base set and the
limiting set of the r-values of node j and node i dif-
fer by {m}, for any group V that lies between the
base set and the limiting set of node i, the excess of
group V will differ by a constant amount from the
corresponding group (V \ {m}) at node j. Therefore,
the set arg ri(T ) equals the set arg rj(S) ∪ {m}, and
ri(T ) = rj(S)+xm− v(cut), where v(cut) is the value
of the rules in the cut between m and S. For any sub-
set S ⊂ Xi that does not include m, we need to con-
sider the values of rules that include ¬m as a literal
in the pattern. Also, when computing the reserve, the
payoff xm will not contribute to group S. Therefore,
together with the running intersection property as ar-
gued above, we can show that ri(S) = rj(S)− v(cut).

Join nodes (i with left child j and right child k) For any
given set S ⊆ Xi, consider the r-values of that set
at j and k. If arg rj(S) or arg rk(S) includes agents
not in S, then argrj(S) and argrk(S) will be dis-
joint from each other due to the running intersection
property. Therefore, we can decompose arg ri(S) into
three sets, (arg rj(S) \ S) on the left, S in the middle,
and (arg rk(S) \ S) on the right. The reserve rj(S)
will cover the excesses on the left and in the middle,
whereas the reserve rk(S) will cover those on the right
and in the middle, and so the excesses in the middle is
double-counted. We adjust for the double-counting by
subtracting the excesses in the middle from the sum
of the two reserves rj(S) and rk(S).

Finally, note that each step in the computation of the r-
values of each node i takes time at most exponential in the
size of Xi, hence the algorithm runs in time exponential only
in the treewidth of the graph.

5.4 Algorithm for Core Non-emptiness
We can extend the algorithm for Core-Membership into

an algorithm for Core-Non-Emptiness. As described in
section 2, whether the core is empty can be checked using
the optimization program based on the balancedness condi-
tion (3). Unfortunately, that program has an exponential
number of variables. On the other hand, the dual of the
program has only n variables, and can be written as follows:

minimize
x∈Rn

∑n
i=1 xi

subject to x(S) ≥ v(S), ∀S ⊆ N
(7)

By strong duality, optimal value of (7) is equal to opti-
mal value of (4), the primal program described in section
2. Therefore, by the Bondereva-Shapley theorem, if the op-
timal value of (7) is greater than v(N), the core is empty.

We can solve the dual program using the ellipsoid method
with Core-Membership as a separation oracle, i.e., a pro-
cedure for returning a constraint that is violated. Note that
a simple extension to the Core-Membership algorithm will
allow us to keep track of the set T for which e(T ) < 0 dur-
ing the r-values computation, and hence we can return the
inequality about T as the constraint violated. Therefore,
Core-Non-Emptiness can run in time polynomial in the
running time of Core-Membership, which in turn runs in



time exponential only in the treewidth of the graph. Note
that when the core is not empty, this program will return
an outcome in the core.

6. CONCLUDING REMARKS
We have developed a fully expressive representation scheme

for coalitional games of which the size depends on the com-
plexity of the interactions among the agents. Our focus
on general representation is in contrast to the approach
taken in [3, 4]. We have also developed an efficient algo-
rithm for the computation of the Shapley values for this
representation. While Core-Membership for MC-nets is
coNP-complete, we have developed an algorithm for Core-
Membership that runs in time exponential only in the treewidth
of the agent graph. We have also extended the algorithm
to solve Core-Non-Emptiness. Other than the algorithm
for Core-Non-Emptiness in [4] under the restriction of
non-negative edge weights, and that in [2] for superaddi-
tive games when the value of the grand coalition is given,
we are not aware of any explicit description of algorithms
for core-related problems in the literature.

The work in this paper is related to a number of areas
in computer science, especially in artificial intelligence. For
example, the graphical interpretation of MC-nets is closely
related to Markov random fields (MRFs) of the Bayes nets
community. They both address the issue of of conciseness
of representation by using the combinatorial structure of
weighted hypergraphs. In fact, Kearns et al. first apply
these idea to games theory by introducing a representation
scheme derived from Bayes net to represent non-cooperative
games [6]. The representational issues faced in coalitional
games are closely related to the problem of expressing val-
uations in combinatorial auctions [5, 10]. The OR-bid lan-
guage, for example, is strongly related to superadditivity.
The question of the representation power of different pat-
terns is also related to Boolean expression complexity [12].
We believe that with a better understanding of the relation-
ships among these related areas, we may be able to develop
more efficient representations and algorithms for coalitional
games.

Finally, we would like to end with some ideas for extend-
ing the work in this paper. One direction to increase the
conciseness of MC-nets is to allow the definition of equiva-
lent classes of agents, similar to the idea of extending Bayes
nets to probabilistic relational models. The concept of sym-
metry is prevalent in games, and the use of classes of agents
will allow us to capture symmetry naturally and concisely.
This will also address the problem of unpleasing assymetric
representations of symmetric games in our representation.

Along the line of exploiting symmetry, as the agents within
the same class are symmetric with respect to each other, we
can extend the idea above by allowing functional description
of marginal contributions. More concretely, we can specify
the value of a rule as dependent on the number of agents
of each relevant class. The use of functions will allow con-
cise description of marginal diminishing returns (MDRs).
Without the use of functions, the space needed to describe
MDRs among n agents in MC-nets is O(n). With the use
of functions, the space required can be reduced to O(1).

Another idea to extend MC-nets is to augment the seman-
tics to allow constructs that specify certain rules cannot be
applied simultaneously. This is useful in situations where a
certain agent represents a type of exhaustible resource, and

therefore rules that depend on the presence of the agent
should not apply simultaneously. For example, if agent i in
the system stands for coal, we can either use it as fuel for
a power plant or as input to a steel mill for making steel,
but not for both at the same time. Currently, to represent
such situations, we have to specify rules to cancel out the
effects of applications of different rules. The augmented se-
mantics can simplify the representation by specifying when
rules cannot be applied together.
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APPENDIX
We will formally show the correctness of the r-value compu-
tation in Algorithm 1 of introduce nodes and join nodes.

Lemma 1. The procedure for computing the r-values of
introduce nodes in Algorithm 1 is correct.

Proof. Let node m be the newly introduced agent at i.
Let U denote the set of agents in the subtree rooted at i.
By the running intersection property, all interactions (the
hyperedges) between m and U must be in node i. For all
S ⊆ Xi : m ∈ S, let R denote (U \Xi) ∪ S), and Q denote
(R \ {m}).
ri(S) = r(S, R)

= min
T :S⊆T⊆R

e(T )

= min
T :S⊆T⊆R

x(T )− v(T )

= min
T :S⊆T⊆R

x(T \ {m}) + xm − v(T \ {m})− v(cut)

=

(
min

T ′:S\{m}⊆T ′⊆Q
e(T ′)

)
+ xm − v(cut)

= rj(S) + xm − v(cut)

The argument for sets S ⊆ Xi : m /∈ S is symmetric except
xm will not contribute to the reserve due to the absence of
m.

Lemma 2. The procedure for computing the r-values of
join nodes in Algorithm 1 is correct.

Proof. Consider any set S ⊆ Xi. Let Uj denote the
subtree rooted at the left child, Rj denote ((Uj \Xj) ∪ S),
and Qj denote (Uj \ Xj). Let Uk, Rk, and Qk be defined
analogously for the right child. Let R denote (U \Xi)∪ S).

ri(S) = r(S, R)

= min
T :S⊆T⊆R

x(T )− v(T )

= min
T :S⊆T⊆R

(
x(S) + x(T ∩Qj) + x(T ∩Qk)

− v(S)− v(cut(S, T ∩Qj)− v(cut(S, T ∩Qk)
)

= min
T :S⊆T⊆R

(
x(T ∩Qj)− v(cut(S, T ∩Qj))

)

+ min
T :S⊆T⊆R

(
x(T ∩Qk)− v(cut(S, T ∩Qk))

)

+ (x(S)− v(S)) (*)

= min
T :S⊆T⊆R

(
x(T ∩Qj) + x(S)− v(cut(S, T ∩Qj))− v(S)

)

+ min
T :S⊆T⊆R

(
x(T ∩Qk) + x(S)− v(cut(S, T ∩Qk))− v(S)

)

− (x(S)− v(S))

= min
T :S⊆T⊆R

e(T ∩Rj) + min
T :S⊆T⊆R

e(T ∩Rk)− e(S)

= min
T ′:S⊆T ′⊆Rj

e(T ′) + min
T ′′:S⊆T⊆Rk

e(T ′′)− e(S)

= rj(S) + rk(S)− e(S)

where (*) is true as T ∩ Qj and T ∩ Qk are disjoint due
to the running intersection property of tree decomposition,
and hence the minimum of the sum can be decomposed into
the sum of the minima.


